

S-shaped Bends (with flow in two perpendicular planes) Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of S-shaped bends (with flow in two perpendicular planes) whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the first bend.

Model formulation:

Hydraulic diameter (m):
$$D_h = D_0$$

Cross-section area (m²):

$$\mathsf{F}_{\mathsf{0}} = \pi \cdot \frac{\mathsf{D}_{\mathsf{0}}^{2}}{4}$$

Total length measured along the axis (m):

$$\mathsf{I} = 2 \cdot \left(2 \cdot \pi \cdot R_0 \cdot \frac{\delta}{360} \right) + I_{el}$$

Mean velocity (m/s):

$$W_0 = \frac{Q}{F_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Fluid volume (m³):

$$V = F_0 \cdot I$$

Fluid mass (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho$$

Reynolds number:

$$\mathsf{Re} = \frac{W_0 \cdot D_h}{v}$$

Relative roughness:

$$\overline{\Delta} = \frac{\Delta}{D_h}$$

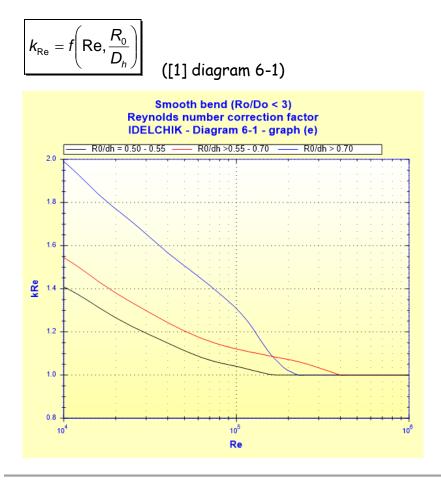
■ Case of a single bend of relative radius of curvature lower than 3 ($R_0/D_0 < 3$) ([1] diagram 6-1)

Coefficient of effect of the roughness:

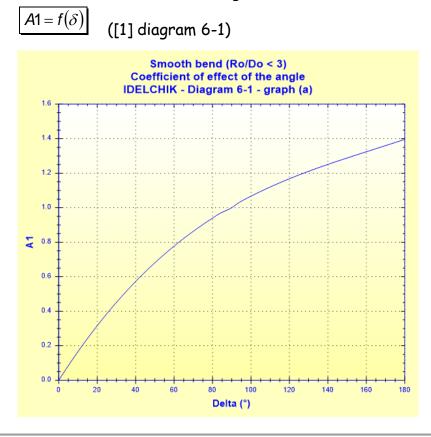
$$k_{\Delta} = f\left(\frac{R_0}{D_0}, \text{Re}, \overline{\Delta}\right)$$
 ([1] diagram 6-1)

• $0.50 \le R_0/D_0 \le 0.55$

Δ	Re		
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴	
0	1.0	1.0	
0 - 0.001	1.0	$1 + 0.5 \cdot 10^3 \cdot \overline{\Delta}$	
> 0.001	1.0	1.5	

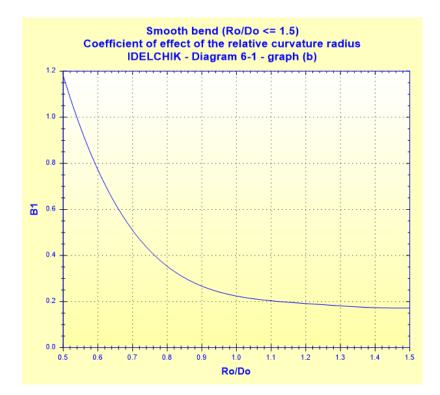

• R₀/D₀ > 0.55

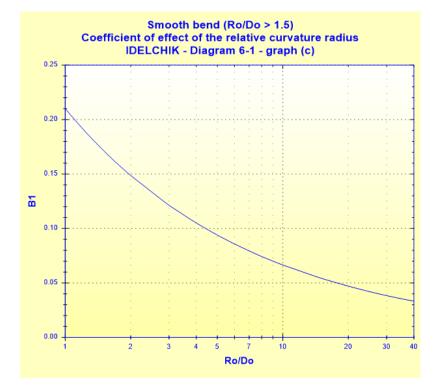
Δ		Re	
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴ - 2·10 ⁵	> 2·10 ⁵
0	1.0	1.0	1.0
0 - 0.001	1.0	λ_{Δ} / $\lambda_{ m sm}$	$1 + 10^3 \cdot \overline{\Delta}$
> 0.001	1.0	2.0	2.0


with:

 λ_{sm} : Darcy friction factor for hydraulically smooth pipe ($\overline{\Delta}$ = 0) at Re λ_{Δ} : Darcy friction factor for rough pipe ($\overline{\Delta}$ = Δ/D_h) at Re

Coefficient of effect of the Reynolds number ($Re \ge 10^4$):

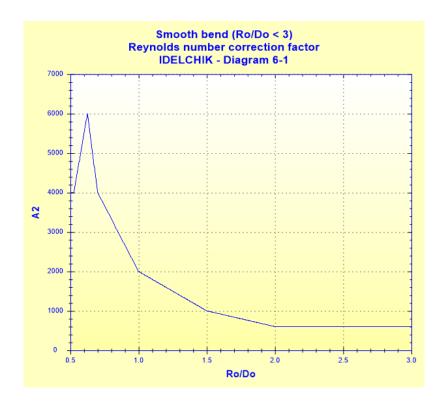



Coefficient of effect of the relative curvature radius:

$$B1 = f\left(\frac{R_0}{D_h}\right) \qquad ([1] \text{ diagram 6-1})$$

• $0.5 \le R_0/D_0 \le 1.5$

• $R_0/D_0 > 1.5$



Coefficient of effect of the relative elongation of the cross section: $\begin{array}{c} \hline C1=1 \\ \hline ([1] \text{ diagram 6-1}) \end{array}$

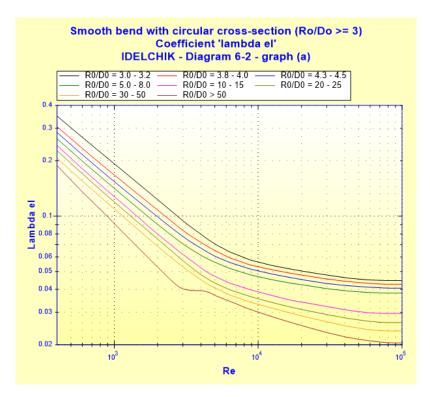
Reynolds number correction factor that depends on the relative curvature radius:

$$A2 = f\left(\frac{R_0}{D_0}\right)$$
 ([1] diagram 6-1)

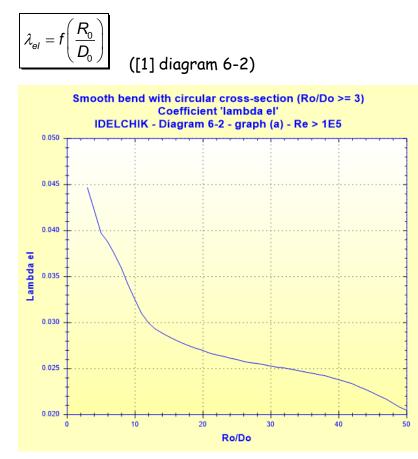
R_0/D_0	0.50 - 0.55	>0.55 - 0.70	>0.70 - 1.0	>1.0 - 2.0	>2.0
A2 × 10 ⁻³	4.0	6.0	4.0 - 2.0	1.0	0.6

Pressure loss coefficient (without friction):

• Re $\geq 10^4$


$$\begin{aligned} \zeta'_{loc} &= k_{\Delta} \cdot k_{\text{Re}} \cdot A1 \cdot B1 \cdot C1 \\ \bullet & 3 \cdot 10^3 < \text{Re} < 10^4 \\ \hline \zeta'_{loc} &= \frac{A2}{\text{Re}} + A1 \cdot B1 \cdot C1 \\ \hline ([1] \text{ diagram 6-1}) \end{aligned}$$

■ Case of a single bend of relative radius of curvature greater than or equal to 3 ($R_0/D_0 \ge 3$) ([1] diagram 6-2)

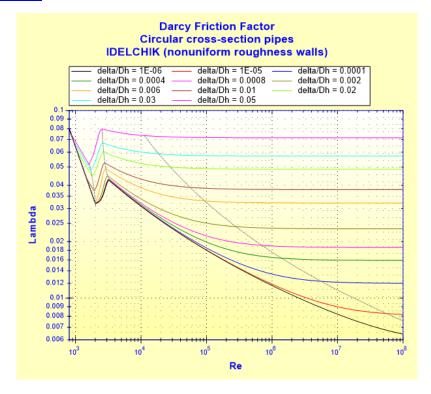

Total friction factor with smooth wall:

•
$$4 \cdot 10^2 \le \text{Re} < 10^5$$

$$\lambda_{el} = f\left(\text{Re}, \frac{R_0}{D_0}\right) \qquad ([1] \text{ diagram 6-2})$$

Estimation of the coefficient of local resistance

$$\zeta'_{loc} = \left(\lambda_{el} - \lambda_{s}\right) \cdot \frac{2 \cdot \pi \cdot R_{0} \cdot \delta / 360}{D_{h}}$$

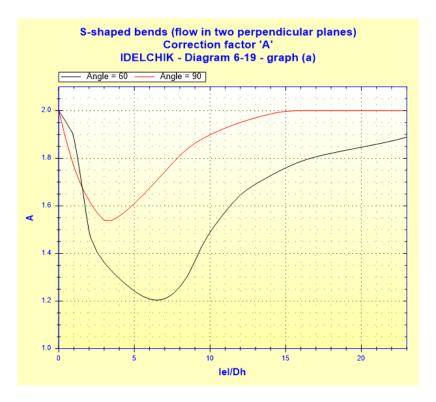

with:

 λ_{s} : Darcy friction factor for hydraulically smooth pipe ($\overline{\Delta}$ = 0) at Re

Darcy friction factor:

$$\lambda = f\left(\mathsf{Re}, \frac{\Delta}{D_h}\right)$$

See <u>Straight Pipe - Circular Cross-Section and Nonuniform Roughness Walls</u> (IDELCHIK)


Pressure loss friction factor:

$$\zeta_{fr} = \lambda \cdot \left[2 \cdot \left(0.0175 \cdot \delta \cdot \frac{R_0}{D_h} \right) + \frac{I_{el}}{D_h} \right]$$

([1] diagram 6-19)

Coefficient of correction:

$$A = f\left(\frac{L_{el}}{D_h}, \delta\right)$$
 ([1] diagram 6-19 graph a)

Total pressure loss coefficient (based on the mean velocity in the bends):

 $\zeta = \mathbf{A} \cdot \zeta'_{loc} + \zeta_{fr}$

([1] diagram 6-19)

Straight length of equivalent pressure loss (m):

$$L_{eq} = \zeta \cdot \frac{D_0}{\lambda}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2} \qquad ([1] \text{ diagram 6-19})$$

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{W_0^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

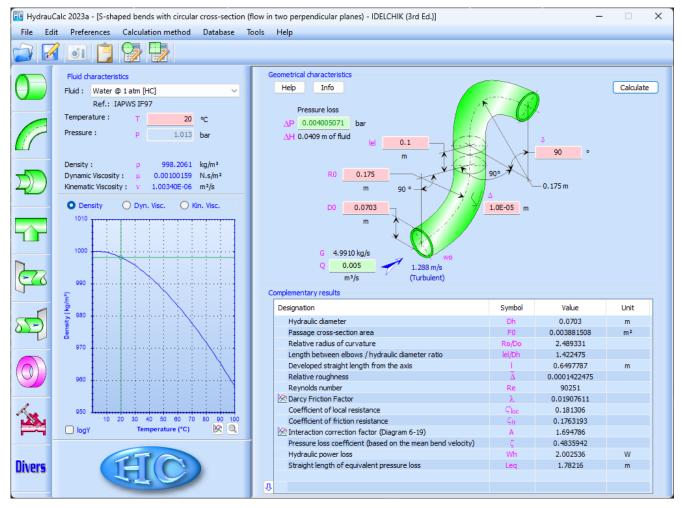
- D_h Bend hydraulic diameter (m)
- D₀ Bend internal diameter (m)
- F₀ Cross-sectional area (m²)
- I Total length measured along the axis (m)
- lel Straight length between bends (m)
- R₀ Radius of curvature (m)
- δ Curvature angle of each bend (°)
- Q Volume flow rate (m³/s)

Wo	Mean velocity (m/s)
G G	Mass flow rate (kg/s)
V	Fluid volume (m ³)
Ň	Fluid mass (kg)
Re	Reynolds number ()
Δ	Absolute roughness of walls (m)
$\frac{\Delta}{\overline{\Delta}}$	Relative roughness of walls ()
\mathbf{k}_{Δ}	Coefficient that allows for the effect of the roughness ()
r∆ KRe	Coefficient that allows for the effect of the Reynolds number ()
rre A1	Coefficient that allows for the effect of the angle ()
B1	Coefficient that allows for the effect of the relative curvature radius ()
C1	Coefficient that allows for the effect of the relative elongation of the
	cross section ()
A2	Reynolds number correction factor that depends on the relative
	curvature radius ()
ζ'loc	Coefficient of local resistance ()
λel	Total friction factor with smooth wall ()
λ	Darcy friction coefficient ()
ζfr	Pressure loss friction factor ()
Α	Coefficient of correction ()
ζ	Total pressure loss coefficient (based on the mean velocity in the bend)
	0
Leq	Straight length of equivalent pressure loss (m)
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
v	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s^2)
-	

Validity range:

- stabilized flow upstream bend
- length of the straight section downstream: $\geq 10~D_0$
- relative radius of curvature: greater than or equal to 1 ($R_0/D_0 \ge 1$)
- curvature angle of one bend: 0 to 180°

for ' δ ' angles less than 60° the pressure loss coefficient ' ζ ' is estimated by taking into account an interaction correction factor 'A' corresponding to that of an angle of 60°.


for ' δ ' angles greater than 90° the pressure loss coefficient ' ζ ' is estimated by taking into account an interaction correction factor 'A' corresponding to that of an angle of 90°.

- \blacksquare case of relative radius of curvature lower than 3 (R_0/D_0 < 3)
 - flow regime: $Re \ge 3 \cdot 10^3$

- case of relative radius of curvature greater than or equal to 3 ($R_0/D_0 \ge 3$)
 - flow regime: $Re \ge 400$

for Reynolds number 'Re' lower than 400 the coefficient ' λ_{el} ' is linearly extrapolated.

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc © François Corre 2022 Edition: June 2022