

Helical Tube (Coil) Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the head loss (pressure drop) of a helical tube whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the helical tube.

Model formulation:

Cross-section area (m²):
$$A = \pi \cdot \frac{d^2}{4}$$

$$V = \frac{Q}{A}$$

Length measured along the axis (m):

$$\mathsf{L} = \mathsf{N} \cdot \sqrt{\left(2 \cdot \pi \cdot r\right)^2 + p^2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho_m$$

Fluid volume (m³):

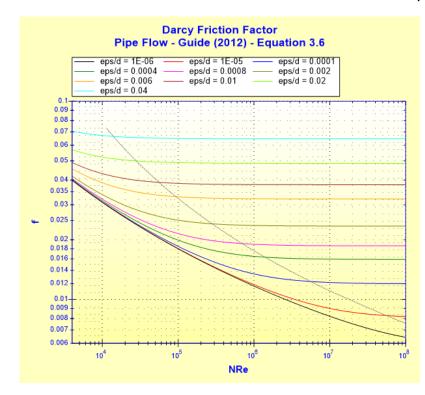
$$Vol = A \cdot L$$

Fluid mass (kg):

 $Mas = Vol \cdot \rho_m$

Reynolds number:

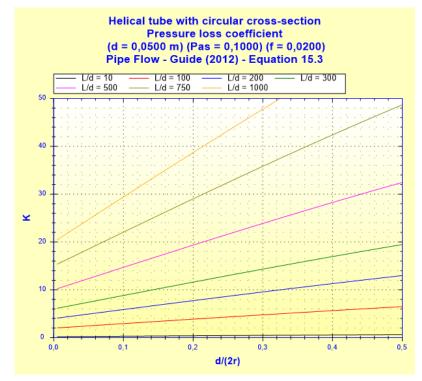
$$N_{\text{Re}} = \frac{V \cdot d}{v}$$


Relative roughness:

$$R_r = \frac{\varepsilon}{d}$$

Darcy friction factor:

f =		1		
7 –	2·log	$\left(\frac{\varepsilon}{3.7 \cdot d}\right)^{+}$	$\frac{2.51}{N_{\rm Re} \cdot \sqrt{f}}$	


Colebrook-White equation ([1] equation 3.6)

Total pressure loss coefficient (based on mean velocity in helical tube):

$$\mathsf{K} = \mathsf{N} \cdot \left[f \cdot \frac{\sqrt{(2 \cdot \pi \cdot r)^2 + p^2}}{d} + 0.2 + 4.8 \cdot f \right]$$

([1] equation 15.3)

f=0.02)

(with d=0.05 m, Pas=0.1 m and

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{V^2}{2 \cdot g}$$

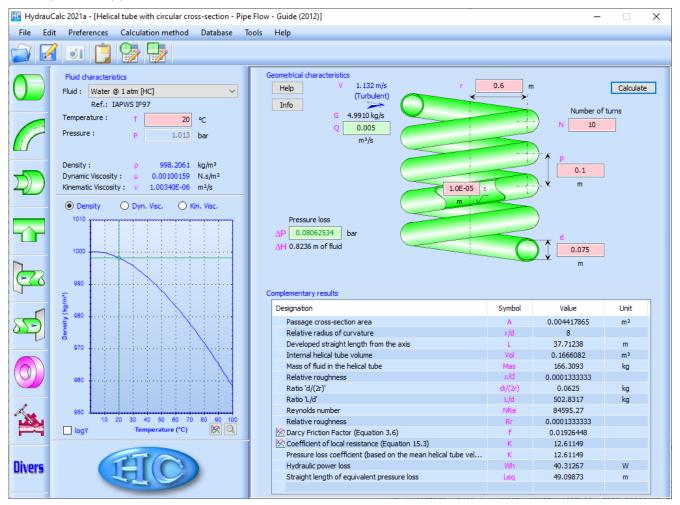
Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Straight length of equivalent pressure loss (m):

$$L_{eq} = K \cdot \frac{d}{f}$$

Symbols, Definitions, SI Units:


- d Internal diameter of the helical tube (m)
- A Cross-section area (m²)
- Q Volume flow rate (m³/s)
- V Mean velocity (m/s)
- N Number of turns constituting the helical tube ()
- p Pitch of the helical tube (m)
- r Radius of curvature (m)
- L Length measured along the axis (m)
- G Mass flow rate (kg/s)
- Vol Fluid volume (m³)

Mas	Fluid mass (kg)
N_{Re}	Reynolds number ()
Rr	Relative roughness ()
3	Absolute roughness of walls (m)
f	Darcy friction factor
К	Total pressure loss coefficient (based on mean velocity in helical tube) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
Leq	Straight length of equivalent pressure loss (m)
ρm	Fluid density (kg/m³)
V	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- turbulent flow regime (N_{Re} $\geq 10^4$)
- stabilized flow upstream of the helical tube

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc © François Corre 2021 Edition: January 2021