Helical Tube (Coil) Circular Cross-Section (CRANE)

Model description:

This model of component calculates the head loss (pressure drop) of a helical tube whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the helical tube.

Model formulation:

Cross-section area $\left(m^{2}\right)$:
$\mathrm{A}=\pi \cdot \frac{d^{2}}{4}$

Mean velocity (m / s):
$v=\frac{q}{A}$

Length measured along the axis (m):

$$
\mathrm{L}=2 \cdot \pi \cdot r \cdot N_{t}
$$

Mass flow rate (kg / s):
$w=q \cdot \rho$

Fluid volume $\left(m^{3}\right)$:

$$
\mathrm{V}=A \cdot L
$$

Fluid mass (kg):

$$
\mathrm{M}=\mathrm{Vol} \cdot \rho_{m}
$$

Reynolds number:

$$
\operatorname{Re}=\frac{v \cdot d}{v}
$$

Darcy friction factor:
$f_{T}=\frac{1}{\left[2 \cdot \log \left(\frac{\varepsilon}{3.7 \cdot d}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{f_{T}}}\right)\right]^{2}}$

Colebrook-White equation

Resistance coefficient for one 90° smooth bend:

$$
K=f\left(\frac{r}{d}, f_{T}\right)
$$

([1] Appendix A-29)

r / d	K	K / f_{T}
1	$20 f_{T}$	20
1.5	$14 f_{T}$	14
2	$12 f_{T}$	12
3	$12 f_{T}$	12
4	$14 f_{T}$	14
6	$17 f_{T}$	17
8	$24 f_{T}$	24
10	$30 f_{T}$	30
12	$34 f_{T}$	34
14	$38 f_{T}$	38
16	$42 f_{T}$	42
20	$50 f_{T}$	50

Total pressure loss coefficient (based on mean velocity in helical tube):

$$
K_{B}=(n-1)\left(0.25 \cdot \pi \cdot f_{T} \cdot \frac{r}{d}+0.5 \cdot K_{1}\right)+K_{1}
$$

([1] Equation 2-20)
with:

$$
n=4 \cdot N_{t}
$$

and:

$$
K_{1}=K \cdot F_{t}
$$

(with $f_{T}=0.02$)
$\Delta P=K_{B} \cdot \frac{\rho \cdot v^{2}}{2}$

Total head loss of fluid (m):

$$
\Delta H=K_{B} \cdot \frac{v^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot q
$$

Straight length of equivalent pressure loss (m):

$$
L_{e q}=K_{B} \cdot \frac{d}{f_{T}}
$$

Symbols, Definitions, SI Units:

d Internal diameter of the helical tube (m)
A Cross-section area (m^{2})
$q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$v \quad$ Mean velocity (m / s)
$N_{+} \quad$ Number of turns constituting the helical tube ()
$r \quad$ Radius of curvature (m)
$L \quad$ Length measured along the axis (m)
$w \quad$ Mass flow rate (kg / s)
$V \quad$ Fluid volume (m^{3})
$M \quad$ Fluid mass (kg)
Re Reynolds number ()
$\varepsilon \quad$ Absolute roughness of walls (m)
$f_{T} \quad$ Darcy friction factor
$n \quad$ Number of 90° bends constituting the helical tube ()
$K_{1} \quad$ Resistance coefficient for one 90° smooth bend ()
$K_{B} \quad$ Total pressure loss coefficient (based on mean velocity in helical tube) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$L_{\text {eq }} \quad$ Straight length of equivalent pressure loss (m)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime $\left(\operatorname{Re} \geq 10^{4}\right)$
- stabilized flow upstream of the helical tube
- relative radius of curvature (r / d) range between 1 and 20
for relative radii 'r/d' between 0.5 and 1 or those greater than 20, the coefficient ' K ' is linearly extrapolated.

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 Edition 1999

HydrauCalc
Edition: January 2021

