

Helical Tube (Coil) Circular Cross-Section (CRANE)

Model description:

This model of component calculates the head loss (pressure drop) of a helical tube whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the helical tube.

Model formulation:

Cross-section area (m²):

$$A = \pi \cdot \frac{d^2}{4}$$

Mean velocity (m/s):

$$V = \frac{q}{A}$$

Length measured along the axis (m):

$$L = 2 \cdot \pi \cdot r \cdot N_t$$

Mass flow rate (kg/s):

$$W = q \cdot \rho$$

Fluid volume (m³):

$$V = A \cdot L$$

Fluid mass (kg):

$$M = Vol \cdot \rho_m$$

Reynolds number:

$$Re = \frac{v \cdot d}{v}$$

Darcy friction factor:

$$f_T = \frac{1}{\left[2 \cdot \log \left(\frac{\varepsilon}{3.7 \cdot d} + \frac{2.51}{\text{Re} \cdot \sqrt{f_T}}\right)\right]^2}$$

Colebrook-White equation

Resistance coefficient for one 90° smooth bend:

$$K = f\left(\frac{r}{d}, f_{T}\right)$$
 ([1] Appendix A-29)

r/d	K	K/f _⊤
1	20 f _⊤	20
1.5	14 f _⊤	14
2	12 f _⊤	12
3	12 f _⊤	12
4	14 f _⊤	14
6	17 f _⊤	17
8	24 f _⊤	24
10	30 f _⊤	30
12	34 f _⊤	34
14	38 f _⊤	38
16	42 f _⊤	42
20	50 f _⊤	50

Total pressure loss coefficient (based on mean velocity in helical tube):

$$K_B = (n-1)\left(0.25 \cdot \pi \cdot f_T \cdot \frac{r}{d} + 0.5 \cdot K_1\right) + K_1$$

([1] Equation 2-20)

with:

$$n = 4 \cdot N_t$$

and:

$$K_1 = K \cdot F_t$$

(with $f_T = 0.02$)

$$\Delta P = K_B \cdot \frac{\rho \cdot v^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K_B \cdot \frac{v^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot q$$

Straight length of equivalent pressure loss (m):

$$L_{eq} = K_B \cdot \frac{d}{f_T}$$

Symbols, Definitions, SI Units:

d Internal diameter of the helical tube (m)

A Cross-section area (m²)

q Volume flow rate (m³/s)

v Mean velocity (m/s)

 N_t Number of turns constituting the helical tube ()

r Radius of curvature (m)

L Length measured along the axis (m)

w Mass flow rate (kg/s)

V Fluid volume (m³)

M Fluid mass (kg)

Re Reynolds number ()

 ϵ Absolute roughness of walls (m)

 f_{T} Darcy friction factor

n Number of 90 $^{\circ}$ bends constituting the helical tube ()

 K_1 Resistance coefficient for one 90° smooth bend ()

 K_B Total pressure loss coefficient (based on mean velocity in helical tube) ()

 ΔP Total pressure loss (Pa)

 ΔH Total head loss of fluid (m)

Wh Hydraulic power loss (W)

Leq Straight length of equivalent pressure loss (m)

 ρ Fluid density (kg/m³)

v Fluid kinematic viscosity (m^2/s)

g Gravitational acceleration (m/s²)

Validity range:

- turbulent flow regime (Re $\geq 10^4$)
- stabilized flow upstream of the helical tube

relative radius of curvature (r/d) range between 1 and 20
for relative radii 'r/d' between 0.5 and 1 or those greater than 20, the
coefficient 'K' is linearly extrapolated.

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc Edition: January 2021

© François Corre 2021