

Helical Tube (Coil) Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of a helical tube whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized at the entrance bend.

Model formulation:

Hydraulic diameter (m):
$$D_h = D_0$$

Cross-section area (m²):

$$\mathsf{F}_{0} = \pi \cdot \frac{{D_{0}}^{2}}{4}$$

Length measured along the axis (m):

$$I = N \cdot 2 \cdot \pi \cdot R_0$$

Mean velocity (m/s):

$$W_0 = \frac{\mathsf{Q}}{\mathsf{F}_0}$$

Mass flow rate (kg/s):

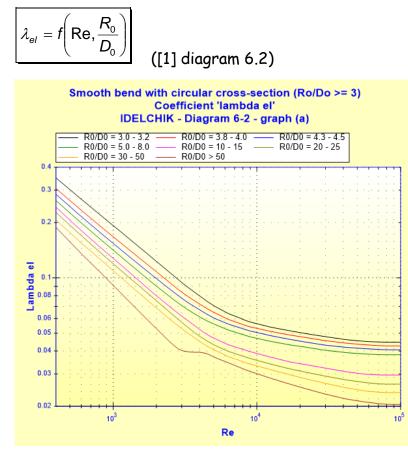
$$G = Q \cdot \rho$$

Fluid volume (m³):

$$\mathsf{V}=\boldsymbol{F}_{0}\cdot\boldsymbol{I}$$

Fluid mass (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho$$


Reynolds number:

$$\mathsf{Re} = \frac{W_0 \cdot D_h}{v}$$

Relative roughness:

$$\overline{\Delta} = \frac{\Delta}{D_0}$$

Friction factor smooth wall:

Pressure loss coefficient:

$$\zeta = 0.0175 \cdot (N \cdot 360) \cdot \lambda_{el} \cdot \frac{R_0}{D_h}$$
 ([1] diagram

6.2)

Straight length of equivalent pressure loss (m):

$$L_{eq} = \zeta \cdot \frac{D_0}{\lambda_{el}}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2} \qquad ([1] \text{ diagram } 6.1 - 6.2)$$

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{w_0^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Symbols, Definitions, SI Units:

Dh	Hydraulic diameter of the helical tube (m)
Do	Internal diameter of the helical tube (m)
Fo	Cross-sectional area (m²)
Ν	Number of turns constituting the helical tube ()
I	Length measured along the axis (m)
Ro	Radius of curvature (m)
Q	Volume flow rate (m³/s)
Wo	Mean velocity (m/s)
G	Mass flow rate (kg/s)
V	Fluid volume (m³)
Μ	Fluid mass (kg)
Re	Reynolds number ()
λel	Friction coefficient ()
ζ	Total pressure loss coefficient (based on the mean velocity in the bend)
	()
Leg	Straight length of equivalent pressure loss (m)
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)
-	

Validity range:

- flow regime: $400 \le \text{Re} \le 10^5$ for Reynolds number 'Re' lower than 400 or greater than 10^5 , the coefficient ' λ_{el} ' is linearly extrapolated.
- $R_0/D_0 \ge 3$
- hydraulically smooth flow
- stabilized flow upstream bend

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc © François Corre 2021 Edition: January 2021