

Composite Bend 90° (2 × 45°) Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of a composite bend 90° (2 x 45°) whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized at the entrance bend.

Model formulation:

Hydraulic diameter (m):

$$D_h = D_0$$

$$\mathsf{F}_{0} = \pi \cdot \frac{\mathsf{D}_{0}^{2}}{4}$$

Length measured along the axis (m):

$$I = 4 \cdot R_0 \cdot tg\left(\frac{90^\circ}{4}\right)$$

Mean velocity (m/s):

$$W_0 = \frac{\mathsf{Q}}{\mathsf{F}_0}$$

Mass flow rate (kg/s):

$$\mathbf{G} = \mathbf{Q} \cdot \boldsymbol{\rho}$$

Fluid volume (m³):

$$V = F_0 \cdot I$$

Fluid mass (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho$$

Reynolds number:

$$\mathsf{Re} = \frac{W_0 \cdot D_h}{v}$$

Relative roughness:

$$\overline{\Delta} = \frac{\Delta}{D_0}$$

Coefficient of effect of the roughness:

$$k_{\Delta} = f\left(\frac{R_0}{D_0}, \text{Re}, \overline{\Delta}\right)$$
 ([1] diagram 6.1)

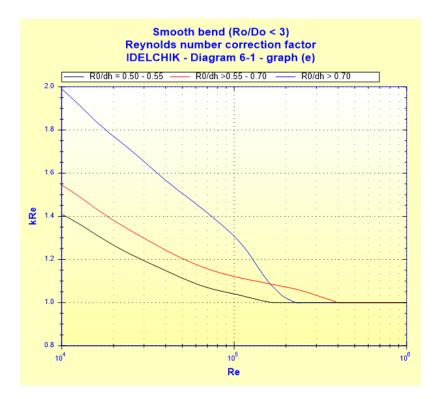
• $0.50 \le R_0/D_0 \le 0.55$

-	Re		
Δ	3·10 ³ - 4·10 ⁴	> 4·10 ⁴	
0	1.0	1.0	
0 - 0.001	1.0	$1 + 0.5 \cdot 10^3 \cdot \overline{\Delta}$	
> 0.001	1.0	1.5	

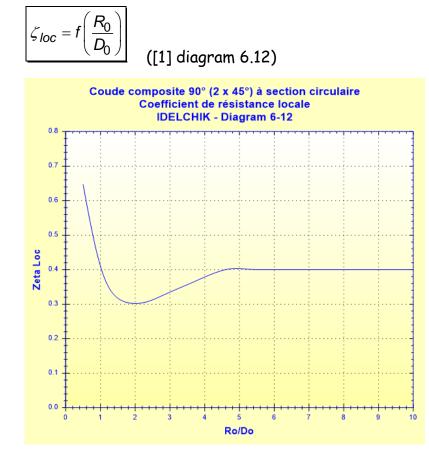
• $R_0/D_0 > 0.55$

Δ		Re	
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴ - 2·10 ⁵	> 2·10 ⁵
0	1.0	1.0	1.0
0 - 0.001	1.0	λ_{Δ} / $\lambda_{ m sm}$	1 + 10 ³ · ∆
> 0.001	1.0	2.0	2.0

with:

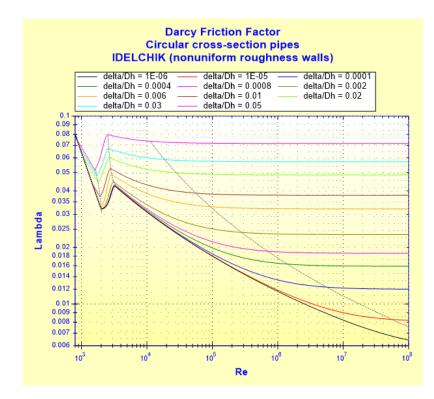

 λ_{sm} : Darcy friction factor for hydraulically smooth pipe ($\overline{\Delta}$ = 0) at Re

 λ_{Δ} : Darcy friction factor for rough pipe ($\overline{\Delta} = \Delta/D_h$) at Re


Coefficient of effect of the Reynolds number ($Re \ge 10^4$):

$$k_{\rm Re} = f\left({\rm Re}, \frac{R_0}{D_h}\right)$$

([1] diagram 6.1)


Coefficient of local resistance:

Darcy friction factor:

$$\lambda = f\left(\mathsf{Re}, \frac{\Delta}{D_h}\right)$$

See <u>Straight Pipe - Circular Cross-Section and Nonuniform Roughness Walls</u> (IDELCHIK)

Pressure loss friction factor:

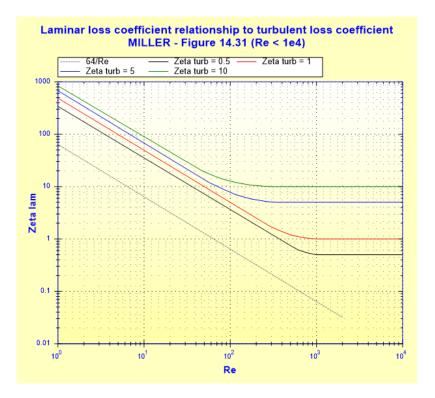
$$\zeta_{\rm fr} = \lambda \cdot \frac{I}{D_0} \qquad ([$$

([1] diagram 6.12)

Corrected pressure loss coefficient:

■ $\text{Re} \ge 10^4$ (turbulent flow)

$$\zeta_{turb} = \mathbf{k}_{\Delta} \cdot \mathbf{k}_{\text{Re}} \cdot \boldsymbol{\zeta}_{\text{loc}}$$


([1] diagram 6.12)

■ Re < 10⁴ (laminar flow)

 $\zeta_{lam} = f(\zeta_{turb}, \text{Re})$ ([2] figure 14.31)

where:

 ζ_{turb} is the resistance coefficient in turbulent regime for Re = 10^4

Total pressure loss coefficient (based on the mean velocity in the bend):

■ $\text{Re} \ge 10^4$ (turbulent flow)

$$\zeta = \zeta_{turb} + \zeta_{fr} \qquad ([1] \text{ diagram 6.12})$$

■ Re < 10⁴ (laminar flow)

 $\zeta = \zeta_{lam} + \zeta_{fr}$ ([1] diagram 6.12)

Straight length of equivalent pressure loss (m):

$$L_{eq} = \zeta \cdot \frac{D_0}{\lambda}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2}$$

([1] diagram 6.1 - 6.2)

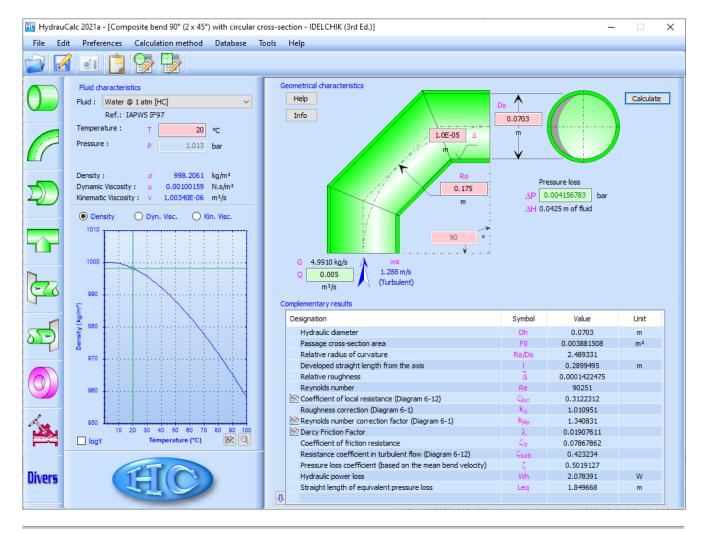
Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{W_0^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Symbols, Definitions, SI Units:


- D_h Bend hydraulic diameter (m)
- Do Bend internal diameter (m)
- F₀ Cross-sectional area (m²)

I	Length measured along the axis (m)
Ro	Radius of curvature (m)
Q	Volume flow rate (m³/s)
Wo	Mean velocity (m/s)
G	Mass flow rate (kg/s)
V	Fluid volume (m ³)
Μ	Fluid mass (kg)
Re	Reynolds number ()
Δ	Absolute roughness of walls (m)
$\overline{\Delta}$	Relative roughness of walls ()
k_{Δ}	Coefficient that allows for the effect of the roughness
K Re	Coefficient that allows for the effect of the Reynolds number
ζloc	Coefficient of local resistance ()
λ	Darcy friction coefficient ()
ζfr	Pressure loss friction factor ()
ζturb	Corrected pressure loss coefficient for $Re \ge 10^4$ ()
ζlam	Corrected pressure loss coefficient for $Re < 10^4$ ()
ζ	Total pressure loss coefficient (based on the mean velocity in the bend)
	0
Leg	Straight length of equivalent pressure loss (m)
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- any flow regime: laminar and turbulent
 - note: for laminar flow regime (Re < 10^4), the pressure loss coefficient " ζ_{lam} " is estimated
- stabilized flow upstream bend
- length of the straight section downstream: $\geq 10~D_0$

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

[2] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc © François Corre 2021 Edition: January 2021