

Butterfly valve (Manufacturer defined)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a butterfly valve installed in a straight pipe.

The valve characteristics are defined by valves manufacturer. The pressure drop of the valves is characterized by a flow coefficient "Kv", "Cv" or "Av" at full opening, and a law of flow coefficient evolution according the valve opening.

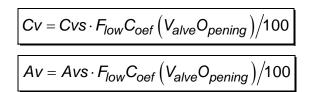
Model formulation:

$$\mathsf{A} = \pi \cdot \frac{D^2}{4}$$

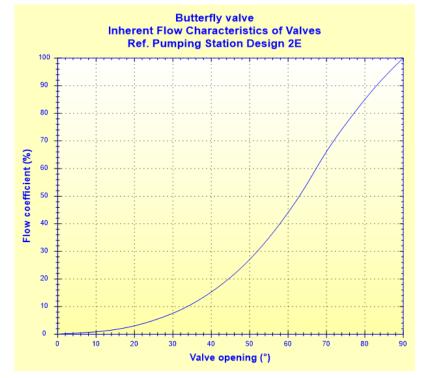
Mean velocity (m/s):

$$U = \frac{Q}{A}$$

Mass flow rate (kg/s):


$$\mathbf{G} = \mathbf{Q} \cdot \boldsymbol{\rho}$$

Reynolds number:


$$\mathsf{Re} = \frac{U \cdot D}{v}$$

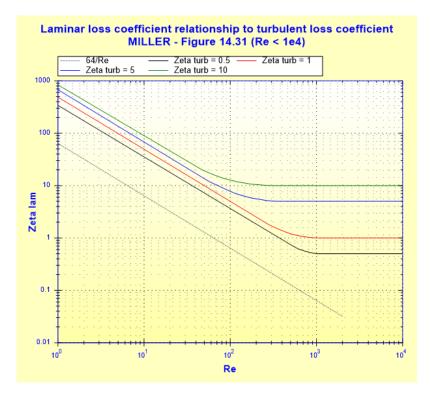
Evolution of the flow coefficients according to the opening of the valve:

 $Kv = Kvs \cdot F_{low}C_{oef} \left(V_{alve}O_{pening}\right)/100$

Example of flow coefficient vs valve opening:

 $F_{low}C_{oef}(V_{alve}O_{pening})$ ([1]

Figure 5-2)


Local resistance coefficient (Pa):

Re $\geq 10^4$ (turbulent flow)

$$\begin{aligned}
\mathcal{K}_{turb} &= \frac{2 \cdot A^2}{\left(\frac{\kappa v}{36023}\right)^2} \\
\mathcal{K}_{turb} &= \frac{2 \cdot A^2}{\left(\frac{c v}{41650}\right)^2} \\
\mathcal{K}_{turb} &= \frac{2 \cdot A^2}{Av^2} \\
\end{aligned}$$

$$\begin{aligned}
\mathbf{Re} &< 10^4 \text{ (laminar flow)} \\
\mathcal{K}_{lam} &= f(\mathcal{K}_{turb}, \text{Re}) \\
\end{aligned}$$
([2] figure

14.31)

Reynolds Number Correction ($Re < 10^4$):

$$C_{\text{Re}} = \frac{K_{lam}}{K_{turb}}$$

Corrected flow coefficient in laminar flow ($Re < 10^4$):

$$Kv_{c} = \frac{Kv}{\sqrt{C_{Re}}}$$
$$Cv_{c} = \frac{Cv}{\sqrt{C_{Re}}}$$
$$Av_{c} = \frac{Av}{\sqrt{C_{Re}}}$$

Total pressure loss coefficient (based on mean velocity):

• turbulent flow (Re $\geq 10^4$):

$$K = K_{turb}$$

• laminar flow (Re < 10^4):

$$K = K_{lam}$$

Total pressure loss (Pa):

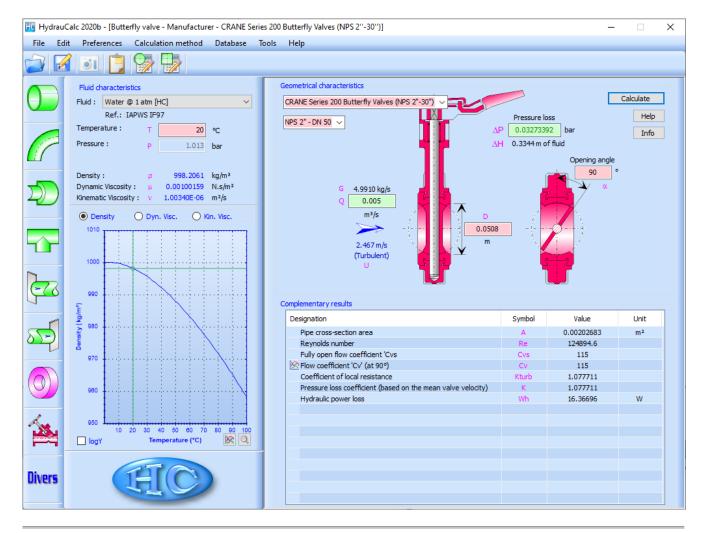
$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$


Symbols, Definitions, SI Units:

D	Internal diameter (m)
Α	Cross-sectional area (m²)
Q	Volume flow rate (m³/s)
G	Mass flow rate (kg/s)
U	Mean velocity (m/s)
Re	Reynolds number ()
α	Opening angle (°)
Kvs	Fully open flow coefficient (m³/h)
Cvs	Fully open flow coefficient (USG/min)
Avs	Fully open flow coefficient (m²)
Κv	Partial opening flow coefficient (m³/h)
Cv	Partial opening flow coefficient (USG/min)
Av	Partial opening flow coefficient (m²)
K_{turb}	Local resistance coefficient for $Re \ge 10^4$ ()
Klam	Local resistance coefficient for $Re < 10^4$ ()
CRe	Reynolds number correction for $Re < 10^4$ ()
Kvc	Corrected flow coefficient in laminar flow (m³/h)
Cvc	Corrected flow coefficient in laminar flow (USG/min)
Avc	Corrected flow coefficient in laminar flow (m²)
Κ	Total pressure loss coefficient (based on mean velocity) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- any flow regime: laminar and turbulent
 - note: for laminar flow regime (Re < 10^4), the pressure loss coefficient "K_{\mbox{\tiny lam}}" is estimated

Example of application:

References:

[1] Pumping Station Design, Second Edition, Garr M. Jones

[2] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc © François Corre 2020 Edition: May 2020