
www.hydraucalc.com

Butterfly valve (MILLER) Type B

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a butterfly valve installed in a straight pipe.

Model formulation:

Cross-sectional area (m2):

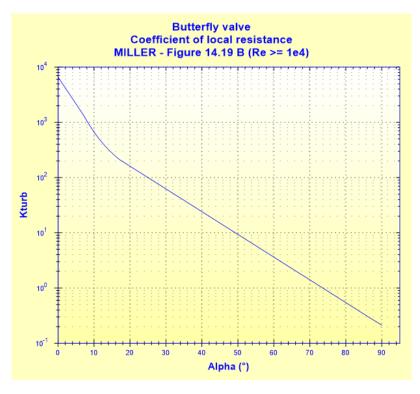
$$A = \pi \cdot \frac{D^2}{4}$$

Mean velocity (m/s):

$$U = \frac{Q}{A}$$

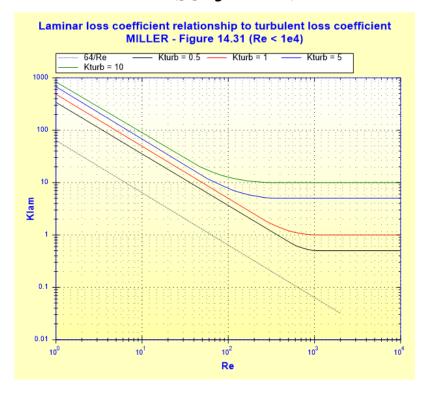
Mass flow rate (kg/s):

$$G = Q \cdot \rho$$


Reynolds number:

$$Re = \frac{U \cdot D}{v}$$

Local resistance coefficient:


■ Re $\geq 10^4$ (turbulent flow)

$$K_{turb} = f(\alpha)$$
 ([1] figure 14.19 B)

■ Re < 10⁴ (laminar flow)

$$K_{lam} = f(K_{turb}, Re)$$
 ([1] figure 14.31)

Reynolds Number Correction (Re $< 10^4$):

$$C_{\text{Re}} = \frac{K_{lam}}{K_{turb}}$$

Total pressure loss coefficient (based on mean velocity):

■ turbulent flow (Re $\geq 10^4$):

$$K = K_{turb}$$

■ laminar flow (Re $< 10^4$):

$$K = K_{lam}$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

D Internal diameter (m)

A Cross-sectional area (m²)

Q Volume flow rate (m^3/s)

G Mass flow rate (kg/s)

U Mean velocity (m/s)

Re Reynolds number ()

 α Opening angle (°)

 K_{turb} Local resistance coefficient for $Re \ge 10^4$ ()

 K_{lam} Local resistance coefficient for Re < 10^4 ()

 C_{Re} Reynolds number correction for Re < 10^4 ()

K Total pressure loss coefficient (based on mean velocity) ()

 ΔP Total pressure loss (Pa)

 ΔH Total head loss of fluid (m)

Wh Hydraulic power loss (W)

 ρ Fluid density (kg/m³)

v Fluid kinematic viscosity (m²/s)

g Gravitational acceleration (m/s^2)

Validity range:

• any flow regime: laminar and turbulent

note: for laminar flow regime (Re $< 10^4$), the pressure loss coefficient " K_{lam} " is estimated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc Edition: May 2020

© François Corre 2020