Rounded-Edged Grid Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a rounded-edged grid (perforated plate) installed in a straight pipe.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$
D_{h}=D_{0}
$$

Pipe cross-section area (m^{2}):

$$
F_{1}=\pi \cdot \frac{D_{1}^{2}}{4}
$$

Cross-section area of one hole $\left(m^{2}\right)$:

$$
f_{0}=\pi \cdot \frac{D_{0}^{2}}{4}
$$

Clear cross-sectional area of the grid $\left(m^{2}\right)$:

$$
F_{0}=f_{0} \cdot N
$$

Mean velocity in pipe (m / s):

$$
w_{1}=\frac{Q}{F_{1}}
$$

Mean velocity in holes (m / s):

$$
w_{0}=\frac{Q}{F_{0}}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho
$$

Reynolds number in pipe:

$$
\mathrm{Re}_{1}=\frac{w_{1} \cdot D_{1}}{v}
$$

Reynolds number in holes:

$$
\operatorname{Re}_{0}=\frac{w_{0} \cdot D_{0}}{v}
$$

Local resistance coefficient:

- $\operatorname{Re}_{0} \geq 10^{5}$

$$
\zeta_{1}=\left[\sqrt{\zeta^{\prime}} \cdot\left(1-\frac{F_{0}}{F_{1}}\right)^{0.75}+\left(1-\frac{F_{0}}{F_{1}}\right)\right]^{2} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}
$$

([1] diagram 8-4)

with:
Coefficient of effect of the round:

$$
\zeta^{\prime}=0.03+0.47 \cdot 10^{-7.7 \cdot \frac{r}{D_{n}}}
$$

$\operatorname{Re}_{0} \leq 10^{5}$
Quadratic local resistance coefficient:
$\zeta_{\text {quad }}=\left[\sqrt{\zeta^{\prime}} \cdot\left(1-\frac{F_{0}}{F_{1}}\right)^{0.75}+\left(1-\frac{F_{0}}{F_{1}}\right)\right]^{2} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}$
([1] diagram 8-4)

Velocity factor:
$\zeta_{\varphi}=f\left(\operatorname{Re}_{0}, \frac{F_{0}}{F_{1}}\right)$
([1] diagram 8-5)
Grid
Velocity factor
IDELCHIK - Diagram 8-5

Contraction factor:

Grid
Contraction coefficient IDELCHIK - Diagram 8-5

Coefficient of local resistance:

- $30<\operatorname{Reo}<10^{5}$

$$
\zeta_{1}=\zeta_{\varphi} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}+\bar{\varepsilon}_{0 \operatorname{Re}} \cdot \zeta_{\text {1quad }}
$$

([1] diagram 8-5)

- $10<\operatorname{Re}_{0} \leq 30$

$$
\zeta_{1}=\frac{33}{\operatorname{Re}_{0}} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}+\bar{\varepsilon}_{0 \text { Re }} \cdot \zeta_{\text {lquad }}
$$

([1] diagram 8-5)

- $\operatorname{Re}_{0} \leq 10$

$$
\zeta_{1}=\frac{33}{\mathrm{Re}_{0}} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}
$$

([1] diagram 8-5 with
$r / D h=0.2)$

Pressure loss coefficient (based on the mean pipe velocity):

$$
\zeta=\zeta_{1}
$$

Total pressure loss (Pa) :

$$
\Delta P=\zeta \cdot \frac{\rho \cdot w_{1}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=\zeta \cdot \frac{w_{1}^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:
$D_{h} \quad$ Hydraulic diameter (m)
$D_{1} \quad$ Pipe internal diameter (m)
$F_{1} \quad$ Pipe cross-sectional area (m^{2})
$N \quad H o l e s ~ n u m b e r ~() ~$
Do Holes diameter (m)
Fo Clear cross-sectional area of the grid $\left(m^{2}\right)$
fo \quad Cross-section area of one hole (m^{2})
$Q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$w_{1} \quad$ Mean velocity in pipe $(\mathrm{m} / \mathrm{s})$
wo Mean velocity in holes (m / s)
$G \quad$ Mass flow rate (kg / s)

r	Radius of the round (m)
R_{e}	Reynolds number in pipe ()
Re_{0}	Reynolds number in holes ()
$\zeta_{1 \text { quad }}$	Quadratic pressure loss coefficient determined as $\operatorname{Re}=10^{5}()$
ζ_{φ}	Velocity factor ()
$\varepsilon_{0 R e}$	Contraction factor ()
ζ_{1}	Coefficient of local resistance ()
ζ	Pressure loss coefficient (based on the mean pipe velocity) ()
$\Delta \mathrm{P}$	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m ${ }^{3}$)
ν	Fluid kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
g	Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the grid

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik
HydrauCalc
Edition: January 2020
© François Corre 2019-2020

