

Rounded-Edged Grid Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a rounded-edged grid (perforated plate) installed in a straight pipe.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$D_h = D_0$$

Pipe cross-section area (m²):

$$F_1 = \pi \cdot \frac{D_1^2}{4}$$

Cross-section area of one hole (m2):

$$f_0 = \pi \cdot \frac{{D_0}^2}{4}$$

Clear cross-sectional area of the grid (m^2) :

$$F_0 = f_0 \cdot N$$

Mean velocity in pipe (m/s):

$$w_1 = \frac{Q}{F_1}$$

Mean velocity in holes (m/s):

$$w_0 = \frac{Q}{F_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in pipe:

$$Re_1 = \frac{W_1 \cdot D_1}{V}$$

Reynolds number in holes:

$$\mathsf{Re}_0 = \frac{w_0 \cdot D_0}{v}$$

Local resistance coefficient:

 \blacksquare Re₀ $\geq 10^5$

$$\zeta_1 = \left[\sqrt{\zeta'} \cdot \left(1 - \frac{F_0}{F_1}\right)^{0.75} + \left(1 - \frac{F_0}{F_1}\right)\right]^2 \cdot \left(\frac{F_1}{F_0}\right)^2$$

([1] diagram 8-4)

with:

Coefficient of effect of the round:

$$\zeta' = 0.03 + 0.47 \cdot 10^{-7.7 \cdot \frac{r}{D_h}}$$
 ([1] diagram 8-4)

 $\blacksquare \ Re_0 \leq 10^5$

Quadratic local resistance coefficient:

$$\zeta_{1quad} = \left[\sqrt{\zeta'} \cdot \left(1 - \frac{F_0}{F_1} \right)^{0.75} + \left(1 - \frac{F_0}{F_1} \right) \right]^2 \cdot \left(\frac{F_1}{F_0} \right)^2$$

([1] diagram 8-4)

Velocity factor:

$$\zeta_{\varphi} = f\left(\text{Re}_0, \frac{F_0}{F_1}\right)$$

([1] diagram 8-5)

Contraction factor:

$$\overline{\varepsilon}_{0Re} = f(Re_0)$$
 ([1] diagram 8-5)

Coefficient of local resistance:

• $30 < Re_0 < 10^5$

$$\zeta_{1} = \zeta_{\varphi} \cdot \left(\frac{F_{1}}{F_{0}}\right)^{2} + \overline{\varepsilon}_{0Re} \cdot \zeta_{1quad}$$
([1] diagram 8-5)

• $10 < Re_0 \le 30$

$$\zeta_1 = \frac{33}{\text{Re}_0} \cdot \left(\frac{F_1}{F_0}\right)^2 + \overline{\varepsilon}_{0\text{Re}} \cdot \zeta_{1\text{quad}}$$
([1] diagram 8-5)

• $Re_0 \le 10$

$$\zeta_1 = \frac{33}{\text{Re}_0} \cdot \left(\frac{F_1}{F_0}\right)^2$$
([1] diagram 8-5)

([1] diagram 8-5 with

r/Dh = 0.2)

Pressure loss coefficient (based on the mean pipe velocity):

$$\zeta = \zeta_1$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{w_1^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

D_h Hydraulic diameter (m)

D₁ Pipe internal diameter (m)

 F_1 Pipe cross-sectional area (m²)

N Holes number ()

Do Holes diameter (m)

F₀ Clear cross-sectional area of the grid (m²)

fo Cross-section area of one hole (m²)

Q Volume flow rate (m³/s)

 w_1 Mean velocity in pipe (m/s)

 w_0 Mean velocity in holes (m/s)

G Mass flow rate (kg/s)

Radius of the round (m) Reynolds number in pipe () Re₁ Re₀ Reynolds number in holes () Quadratic pressure loss coefficient determined as $Re = 10^5$ () ζ_{1} guad Velocity factor () ζ_{φ} Contraction factor () E0Re Coefficient of local resistance () ζ_1 Pressure loss coefficient (based on the mean pipe velocity) () ΔP Total pressure loss (Pa) ΛН Total head loss of fluid (m) Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²)

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the grid

Example of application:

References:

HydrauCalc Edition: January 2020

© François Corre 2019-2020