

Bevel-Edged Orifice (with Transition) Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a bevel-edged orifice installed in a straight pipe with transition.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of orifice to major pipe diameters:

$$\beta = \frac{d_o}{d_1}$$

Major pipe cross-sectional area (m²):

$$\mathsf{A}_1 = \pi \cdot \frac{d_1^2}{4}$$

Minor pipe cross-sectional area (m²):

$$\mathsf{A}_2 = \pi \cdot \frac{\mathsf{d}_2^2}{4}$$

Orifice cross-sectional area (m²):

$$\mathsf{A}_{o} = \pi \cdot \frac{d_{o}^{2}}{4}$$

Major pipe velocity (m/s):

$$V_1 = \frac{Q}{A_1}$$

Minor pipe velocity (m/s):

$$V_2 = \frac{Q}{A_2}$$

Orifice velocity (m/s):

$$V_o = \frac{Q}{A_o}$$

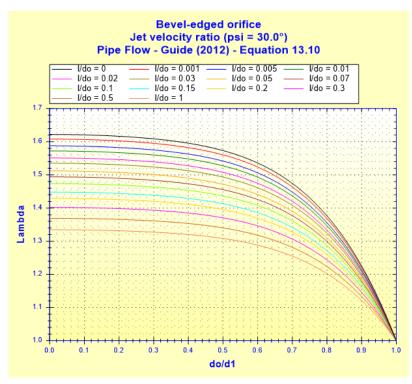
Mass flow rate (kg/s):

$$\mathbf{G} = \mathbf{Q} \cdot \boldsymbol{\rho}_m$$

Reynolds number in major pipe:

$$N_{\text{Re1}} = rac{V_1 \cdot d_1}{v}$$

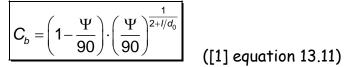
Reynolds number in minor pipe:

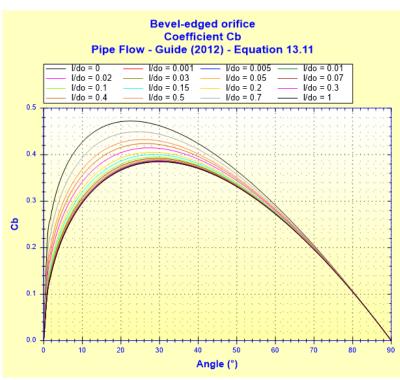

$$N_{\text{Re2}} = rac{V_2 \cdot d_2}{v}$$

Reynolds number in orifice:

$$N_{\mathrm{Re}_o} = rac{V_o \cdot d_o}{v}$$

Jet velocity ratio:


$$\lambda = 1 + 0.622 \cdot \left[1 - C_b \cdot \left(\frac{I}{d_0} \right)^{\frac{1 - \sqrt[4]{d_0}}{2}} \right] \cdot \left(1 - 0.215 \cdot \beta^2 - 0.785 \cdot \beta^5 \right)$$
([1] equal



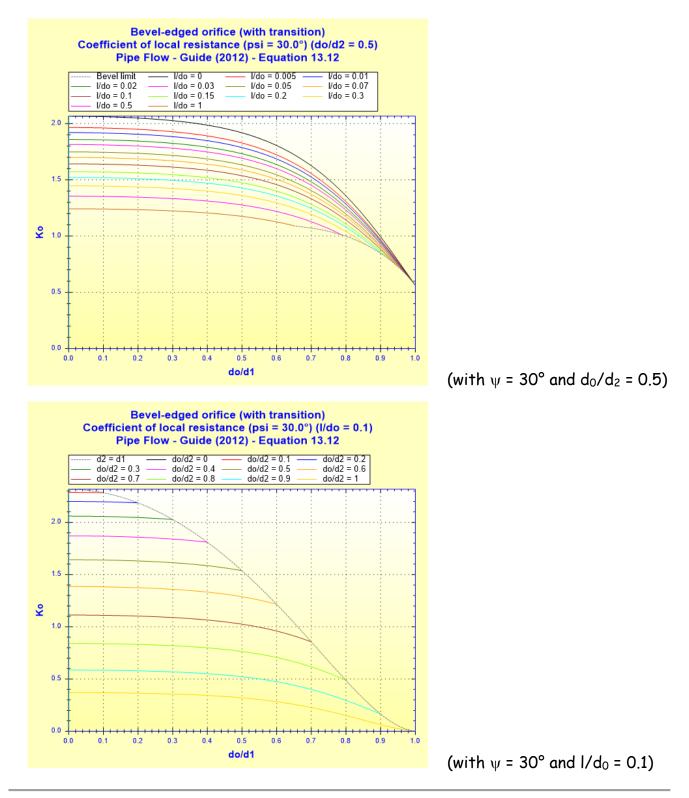
([1] equation 13.10)

(with ψ = 30°)

with: Coefficient of effect of the bevel angle:

Velocity in vena contracta:

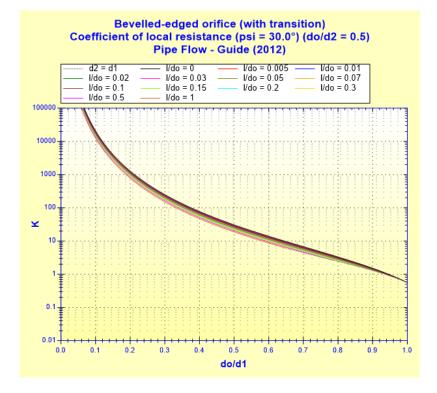
 $V_c = V_0 \cdot \lambda$


Coefficient of local resistance (NRe_{\circ} \ge 10⁴):

$$\mathsf{K}_{\mathsf{o}} = 0.0696 \cdot \left(1 - C_{\mathsf{b}} \cdot \frac{I}{d_{\mathsf{o}}}\right) \cdot \left(1 - 0.42 \cdot \sqrt{\frac{I}{d_{\mathsf{o}}}} \cdot \beta^{2}\right) \cdot \left(1 - \beta^{5}\right) \cdot \lambda^{2} + \left(\lambda - \left(\frac{d_{\mathsf{o}}}{d_{\mathsf{o}}}\right)^{2}\right)^{2}$$

([1] equation

-


13.12)

Total pressure loss coefficient (based on the major pipe velocity):

$$K = K_{o} \cdot \left(\frac{A_{1}}{A_{o}}\right)^{2}$$

r

(with ψ = 30° and d_0/d_2 = 0.5)

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V_1^2}{2}$$

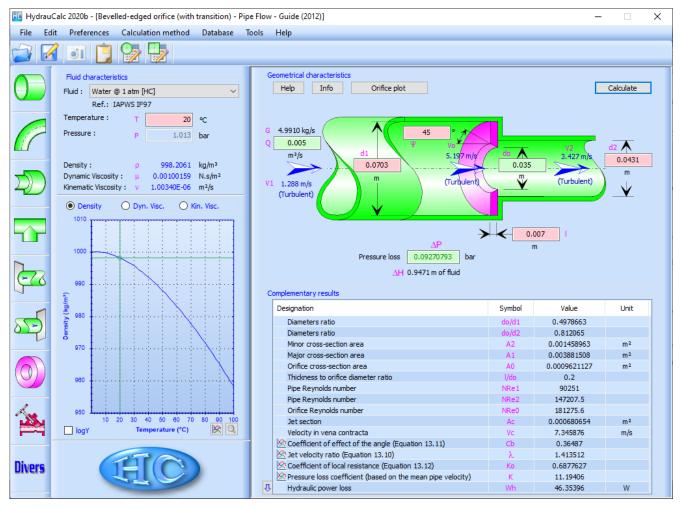
Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{V_1^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Symbols, Definitions, SI Units:


- d₀ Orifice diameter (m)
- d₁ Internal major pipe diameter (m)
- d₂ Internal minor pipe diameter (m)
- β Ratio of orifice to major pipe diameters ()
- A₀ Orifice cross-sectional area (m²)
- A₁ Major pipe cross-sectional area (m²)
- A₂ Minor pipe cross-sectional area (m²)
- Q Volume flow rate (m³/s)
- G Mass flow rate (kg/s)
- Vo Mean velocity in orifice (m/s)
- V_1 Mean velocity in major pipe (m/s)
- V₂ Mean velocity in minor pipe (m/s)
- NReo Reynolds number in orifice ()
- NRe1 Reynolds number in major pipe ()
- NRe₂ Reynolds number in minor pipe ()
- I Orifice thickness (m)

Ψ λ Vc	Bevel angle (°) Jet velocity ratio () Mean velocity in vena contracta (m/s)
Cb	Coefficient of effect of the bevel angle ()
Ko	Coefficient of local resistance ()
K	Total pressure loss coefficient (based on the mean pipe velocity) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ _m ν g	Fluid density (kg/m³) Fluid kinematic viscosity (m²/s) Gravitational acceleration (m/s²)

Validity range:

- turbulent flow regime in orifice (NRe $_{o} \ge 10^{4}$)
- stabilized flow upstream of the orifice
- bevel angle less than or equal to: $\psi \leq tg^{-1}((d_1 d_0) / (2 I))$

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc © François Corre 2020 Edition: May 2020