Round-Edged Orifice (with Transition) Circular Cross-Section
 (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a round-edged orifice installed in a straight pipe with transition.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$
D_{h}=D_{0}
$$

Major pipe cross-section area (m^{2}):

$$
F_{1}=\pi \cdot \frac{D_{1}^{2}}{4}
$$

Minor pipe cross-section area $\left(m^{2}\right)$:

$$
F_{2}=\pi \cdot \frac{D_{2}^{2}}{4}
$$

Orifice cross-section area (m^{2}):

$$
F_{0}=\pi \cdot \frac{D_{0}^{2}}{4}
$$

Mean velocity in major pipe $(\mathrm{m} / \mathrm{s})$:

$$
w_{1}=\frac{Q}{F_{1}}
$$

Mean velocity in minor pipe (m / s):

Mean velocity in orifice (m / s):

$$
w_{0}=\frac{Q}{F_{0}}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho
$$

Reynolds number in major pipe:

$$
\mathrm{Re}_{1}=\frac{W_{1} \cdot D_{1}}{v}
$$

Reynolds number in minor pipe:

$$
\operatorname{Re}_{2}=\frac{W_{2} \cdot D_{2}}{v}
$$

Reynolds number in orifice:

$$
\operatorname{Re}_{0}=\frac{w_{0} \cdot D_{0}}{v}
$$

- $\operatorname{Re} 0 \geq 10^{5}$

Local resistance coefficient:

$$
\zeta=\zeta^{\prime} \cdot\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{1}}\right)^{0.75}+\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{2}}\right)^{2}+2 \cdot \sqrt{\zeta^{\prime}} \cdot\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{1}}\right)^{0.375} \cdot\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{2}}\right)
$$

([2] diagram 4-13)

(with $r / D_{h}=0.1$)
with:
Coefficient of effect of the round:

$$
\zeta^{\prime}=0.03+0.47 \cdot 10^{-7.7 \cdot \frac{r}{D_{n}}}
$$

([1] diagram 4-13)

Round-edged orifice (with transition) Coefficient Zeta'
IDELCHIK - Diagram 4-13

Coefficient de perte de pression (basé sur la vitesse dans le grand tuyau):
$\zeta_{1}=\zeta \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}$

(with $r / D_{h}=0.1$)

- $\operatorname{Re}_{0}<10^{5}$

Quadratic local resistance coefficient:
$\zeta_{\text {quad }}=\left[\zeta^{\prime} \cdot\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{1}}\right)^{0.75}+\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{2}}\right)^{2}+2 \cdot \sqrt{\zeta^{\prime}} \cdot\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{1}}\right)^{0.375} \cdot\left(1-\frac{\mathrm{F}_{0}}{\mathrm{~F}_{2}}\right)\right]$
([2] diagram 4-13)
with :

$$
\zeta^{\prime}=0.03+0.47 \cdot 10^{-7.7 \cdot \frac{r}{D_{h}}}
$$

([1] diagram 4-13)
$\zeta_{\text {1quad }}=\zeta_{\text {quad }} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}$

Velocity factor:
$\zeta_{\varphi}=f\left(\operatorname{Re}_{0}, \frac{F_{0}}{F_{1}}\right)$
([1] diagram 4-19)
Orifice
Velocity factor
IDELCHIK - Diagram 4-19

Contraction factor:
$\bar{\varepsilon}_{0 \text { Re }}=f\left(\operatorname{Re}_{0}\right)$ ([1] diagram 4-19)

Pressure loss coefficient (based on the major pipe velocity):

- $30<\operatorname{Re}_{0}<10^{5}$
$\zeta_{1}=\zeta_{\varphi} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}+\bar{\varepsilon}_{0 \mathrm{Re}} \cdot \zeta_{\text {1quad }}$
([1] diagram 4-19)
- $10<\operatorname{Re}_{0} \leq 30$
$\zeta_{1}=\frac{33}{\operatorname{Re}_{0}} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}+\bar{\varepsilon}_{0 \operatorname{Re}} \cdot \zeta_{1 \text { quad }}$
([1] diagram 4-19)
- $\operatorname{Re}_{0} \leq 10$
$\zeta_{1}=\frac{33}{\operatorname{Re}_{0}} \cdot\left(\frac{F_{1}}{F_{0}}\right)^{2}$
([1] diagram 4-19)

(with $r / D_{h}=0.1$ and F_{0} / F_{2}
$=0.5$)

Total pressure loss (Pa):

$$
\Delta P=\zeta_{1} \cdot \frac{\rho \cdot w_{1}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=\zeta_{1} \cdot \frac{w_{1}^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:

$D_{h} \quad$ Hydraulic diameter (m)
$D_{1} \quad$ Major pipe internal diameter (m)
$D_{2} \quad$ Minor pipe internal diameter (m)
$D_{0} \quad$ Orifice diameter (m)
$F_{1} \quad$ Major pipe cross-sectional area (m^{2})
$\mathrm{F}_{2} \quad$ Minor pipe cross-sectional area (m^{2})
Fo Orifice cross-sectional area (m^{2})
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg / s)
$w_{1} \quad$ Mean velocity in major pipe (m / s)
$w_{2} \quad$ Mean velocity in minor pipe (m / s)
wo Mean velocity in orifice (m / s)
$\mathrm{Re}_{1} \quad$ Reynolds number in major pipe ()
$\mathrm{Re}_{2} \quad$ Reynolds number in minor pipe ()
Reo Reynolds number in orifice ()
$r \quad$ Radius of the round (m)
$\zeta^{\prime} \quad$ Coefficient of effect of the round ()
$\zeta \quad$ Local resistance coefficient (based on the orifice velocity) ()
$\zeta_{q u a d} \quad$ Quadratic local resistance coefficient (based on the orifice velocity) ()
$\zeta_{1 q u a d} \quad$ Quadratic local resistance coefficient (based on the major pipe velocity) ()
$\zeta_{\varphi} \quad$ Velocity factor ()
$\bar{\varepsilon}_{0 R e} \quad$ Contraction factor ()
$\zeta_{1} \quad$ Pressure loss coefficient (based on the major pipe velocity) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the orifice
- round radius less than the radius difference ($r<\left(D_{1} / 2-D_{0} / 2\right)$)

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik
[2] Идельчик.И.Е.Справочник по гидравлическим сопротивлениям. 1992 (original document in Russian language)

Note: The formulation used for the calculation of the local resistance coefficients ζ and $\zeta_{\text {quad }}$ is that of the original reference document [2] which differs from that of the translated document [1]

HydrauCalc
Edition: May 2020
© François Corre 2020

