Rounded-edged Orifice Circular Cross-Section
 (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a rounded-edged orifice installed in a straight pipe.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of orifice to pipe diameters:

$$
\beta=\frac{d_{0}}{d}
$$

Pipe cross-sectional area $\left(m^{2}\right)$:
$\mathrm{A}=\pi \cdot \frac{d^{2}}{4}$

Orifice cross-sectional area $\left(\mathrm{m}^{2}\right)$:
$A_{0}=\pi \cdot \frac{d_{0}{ }^{2}}{4}$

Pipe velocity (m / s):
$V=\frac{Q}{A}$

Orifice velocity (m / s):
$V_{o}=\frac{Q}{A_{o}}$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho_{m}
$$

Reynolds number in pipe:

$$
N_{\mathrm{Re}}=\frac{V \cdot d}{v}
$$

Reynolds number in orifice:

$$
N_{\mathrm{Re}_{o}}=\frac{V_{0} \cdot d_{0}}{v}
$$

Jet velocity ratio:
■ $\mathrm{r} / \mathrm{d}_{0} \leq 1$

$$
\lambda=1+0.622 \cdot\left[1-0.3 \cdot \sqrt{\frac{r}{d_{0}}}-0.7 \cdot \frac{r}{d_{0}}\right]^{4} \cdot\left(1-0.215 \cdot \beta^{2}-0.785 \cdot \beta^{5}\right)
$$

([1] equation 13.7)

Rounded-edged orifice ($r /$ do $<=1$)
Jet velocity ratio
Pipe Flow - Guide (2012) - Equation 13.7

■ $\mathrm{r} / \mathrm{d}_{0}>1$
$\lambda=1 \quad([1] \S 13.3 .1)$

Velocity in vena contracta:

$$
V_{c}=V_{0} \cdot \lambda
$$

Coefficient of local resistance:

■ $\mathrm{r} / \mathrm{d}_{0} \leq 1$

$$
\mathrm{K}_{\mathrm{o}}=0.0696 \cdot\left(1-0.569 \cdot \frac{r}{d_{0}}\right) \cdot\left(1-\sqrt{\frac{r}{d_{0}}} \cdot \beta\right) \cdot\left(1-\beta^{5}\right) \cdot \lambda^{2}+\left(\lambda-\beta^{2}\right)^{2}
$$

Rounded-edged orifice (r/do <= 1)

Coefficient of local resistance
Pipe Flow - Guide (2012) - Equation 13.6

■ $\mathrm{r} / \mathrm{d}_{0}>1$
$\mathrm{K}_{\mathrm{o}}=0.03 \cdot(1-\beta) \cdot\left(1-\beta^{5}\right)+\left(1-\beta^{2}\right)^{2}$
([1] § 13.3.1)

Total pressure loss coefficient (based on the mean pipe velocity):
$K=K_{o} \cdot\left(\frac{A}{A_{0}}\right)^{2}$
■ $\mathrm{r} / \mathrm{d}_{0} \leq 1$

Rounded-edged orifice ($\mathrm{r} / \mathrm{do}<=1$)
Coefficient of local resistance (K)
Pipe Flow - Guide (2012)

■ $\mathrm{r} / \mathrm{d}_{0}>1$

Total pressure loss (Pa) :

$$
\Delta P=K \cdot \frac{\rho_{m} \cdot V^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=K \cdot \frac{V^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:
do Orifice diameter (m)
$d \quad$ Internal pipe diameter (m)
$\beta \quad$ Ratio of orifice to pipe diameters ()
$A_{0} \quad$ Orifice cross-sectional area (m^{2})
A Pipe cross-sectional area (m^{2})
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg/s)
$V_{0} \quad$ Mean velocity in orifice (m / s)
$V \quad$ Mean velocity in pipe (m / s)
NRe。 Reynolds number in orifice ()
NRe Reynolds number in pipe ()
$r \quad$ Rounding radius (m)
$\lambda \quad$ Jet velocity ratio ()
$V_{c} \quad$ Mean velocity in vena contracta (m / s)
$K_{0} \quad$ Coefficient of local resistance ()
$K \quad$ Total pressure loss coefficient (based on the mean pipe velocity) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho_{m} \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime in orifice $\left(N R e_{0} \geq 10^{4}\right)$
- stabilized flow upstream of the orifice
- round radius less than the radius difference $\left(r<\left(d / 2-d_{0} / 2\right)\right)$

Example of application:

Geometrical characteristics

Calculate

Complementary results

Designation	Symbol	Value	Unit
Pipe cross-section area	A	0.003881508	m^{2}
Orifice cross-section area	Ao	0.0009621127	m^{2}
Diameters ratio (do/d)	β	0.4978663	
Relative radius of the round	r/do	0.1428571	
Cross-sections area ratio	Ao/A	0.2478708	
Pipe Reynolds number	NRe	90251	
Orifice Reynolds number	NReo	181275.6	
Jet section	Ac	0.0007887919	m^{2}
Velocity in vena contracta	Vc	6.338807	m / s
Jet velocity ratio (Equation 13.7)	λ	1.219729	
Coefficient of local resistance (Equation 13.6)	Ko	1.019375	
Pressure loss coefficient (based on the mean pipe velocity)	K	16.59141	
Hydraulic power loss	Wh	68.70406	W

References:
[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc

Edition: May 2020
© François Corre 2020

