Sudden Contraction Rounded Circular Cross-Section
 (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction rounded.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$
\beta=\frac{D_{0}}{D_{1}}
$$

Minor cross-sectional area (m^{2}):

$$
F_{0}=\pi \cdot \frac{D_{0}^{2}}{4}
$$

Major cross-sectional area $\left(m^{2}\right)$:

$$
\mathrm{F}_{1}=\pi \cdot \frac{D_{1}^{2}}{4}
$$

Mean velocity in minor diameter (m / s):

$$
w_{0}=\frac{Q}{F_{0}}
$$

Mean velocity in major diameter (m / s):

$$
w_{1}=\frac{Q}{F_{1}}
$$

Mass flow rate (kg / s):

Reynolds number in minor diameter:

$$
\mathrm{Re}_{0}=\frac{w_{0} \cdot D_{0}}{v}
$$

Reynolds number in major diameter:

$$
\mathrm{Re}_{1}=\frac{w_{1} \cdot D_{1}}{v}
$$

Local resistance coefficient:

$$
\zeta_{\text {loc }}=\zeta^{\prime} \cdot\left(1-\frac{F_{0}}{F_{1}}\right)^{3 / 4}
$$

([1] diagram 4-9)

with:

$$
\zeta^{\prime}=0.03+0.47 \cdot 10^{-7.7 \cdot \frac{r}{D_{h}}}
$$

([1] diagram 3-4 Curve c)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$
\zeta=\zeta_{100}
$$

Total pressure loss (Pa):

$$
\Delta P=\zeta \cdot \frac{\rho \cdot w_{0}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=\zeta \cdot \frac{w_{0}{ }^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:
Do Minor diameter (m)
$D_{1} \quad$ Major diameter (m)
$\beta \quad$ Ratio of small to large diameter ()
Fo Minor cross-sectional area (m^{2})
$F_{1} \quad$ Major cross-sectional area (m^{2})
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg / s)
wo Mean velocity in minor diameter (m / s)
$W_{1} \quad$ Mean velocity in major diameter (m / s)
Reo Reynolds number in minor diameter ()
$\mathrm{Re}_{1} \quad$ Reynolds number in major diameter ()
$r \quad$ Radius of the round (m)

Sloc Local resistance coefficient ()
$\zeta \quad$ Total pressure loss coefficient (based on mean velocity in minor diameter) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)

Validity range:

- turbulent flow regime in minor diameter ($\mathrm{Re}_{0} \geq 10^{4}$)
- round radius less than the radius difference ($r<\left(D_{1} / 2-D_{0} / 2\right)$)

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

