

Sudden Contraction Rounded Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction rounded.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{D_0}{D_1}$$

Minor cross-sectional area (m²):

$$\mathsf{F}_0 = \pi \cdot \frac{\mathsf{D}_0^2}{\mathsf{4}}$$

Major cross-sectional area (m2):

$$\mathsf{F_1} = \pi \cdot \frac{\mathsf{D_1}^2}{\mathsf{4}}$$

Mean velocity in minor diameter (m/s):

$$w_0 = \frac{Q}{F_0}$$

Mean velocity in major diameter (m/s):

$$W_1 = \frac{Q}{F_1}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in minor diameter:

$$\mathsf{Re}_0 = \frac{W_0 \cdot D_0}{v}$$

Reynolds number in major diameter:

$$Re_1 = \frac{w_1 \cdot D_1}{v}$$

Local resistance coefficient:

$$\zeta_{loc} = \zeta' \cdot \left(1 - \frac{F_0}{F_1}\right)^{3/4}$$

([1] diagram 4-9)

with:

$$\zeta' = 0.03 + 0.47 \cdot 10^{-7.7 \cdot \frac{r}{D_h}}$$

([1] diagram 3-4 Curve c)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$\zeta = \zeta_{loc}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{{w_0}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

Do Minor diameter (m)

D₁ Major diameter (m)

 β Ratio of small to large diameter ()

 F_0 Minor cross-sectional area (m²)

 F_1 Major cross-sectional area (m²)

Q Volume flow rate (m³/s)

G Mass flow rate (kg/s)

 w_0 Mean velocity in minor diameter (m/s)

 w_1 Mean velocity in major diameter (m/s)

Reo Reynolds number in minor diameter ()

Re1 Reynolds number in major diameter ()

r Radius of the round (m)

Local resistance coefficient () Sloc Total pressure loss coefficient (based on mean velocity in minor diameter) () Total pressure loss (Pa) ΛP ΔH Total head loss of fluid (m) Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) 9

Validity range:

- turbulent flow regime in minor diameter ($Re_0 \ge 10^4$)
- round radius less than the radius difference $(r < (D_1/2-D_0/2))$

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc Edition: January 2020