

Smooth Bend Rectangular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of a bend smoothly curved whose cross-section is rectangular and constant. In addition, the flow is assumed fully developed and stabilized à the entrance bend.

Model formulation:

$$D_{h} = \frac{2 \cdot a_{0} \cdot b_{0}}{a_{0} + b_{0}} \qquad ([1] \text{ diagram 6-1})$$

Cross-section area (m²):

$$\mathsf{F}_{_{0}} = a_{_{0}} \cdot b_{_{0}}$$

Length measured along the axis (m):

$$\mathsf{I} = 2 \cdot \pi \cdot \mathsf{R}_0 \cdot \frac{\delta}{360}$$

Mean velocity (m/s):

$$W_0 = \frac{\mathsf{Q}}{\mathsf{F}_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Fluid volume (m³):

$$\mathsf{V}=\textit{F}_{_{0}}\cdot\textit{I}$$

Fluid mass (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho$$

Reynolds number:

$$\mathsf{Re} = \frac{W_0 \cdot D_h}{v}$$

Relative roughness:

$$\overline{\Delta} = \frac{\Delta}{D_h}$$

\blacksquare Case of relative radius of curvature lower than 3 ($R_0/b_0 < 3$) ([1] diagram 6-1)

Coefficient of effect of the roughness:

$$k_{\Delta} = f\left(\frac{R_0}{b_0}, \text{Re}, \overline{\Delta}\right)$$
 ([1] diagram 6-1)

 $\bullet~0.50 \leq R_0/b_0 \leq 0.55$

Δ	Re		
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴	
0	1.0	1.0	
0 - 0.001	1.0	$1 + 0.5 \cdot 10^3 \cdot \overline{\Delta}$	
> 0.001	1.0	1.5	

• $R_0/b_0 > 0.55$

Δ		Re	
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴ - 2·10 ⁵	> 2·10 ⁵
0	1.0	1.0	1.0
0 - 0.001	1.0	λ_{Δ} / $\lambda_{ m sm}$	1 + 10 ³ · ∆
> 0.001	1.0	2.0	2.0

with:

 λ_{sm} : Darcy friction factor for hydraulically smooth pipe ($\overline{\Delta}$ = 0) at Re λ_{Δ} : Darcy friction factor for rough pipe ($\overline{\Delta}$ = Δ/D_h) at Re

Coefficient of effect of the Reynolds number ($Re \ge 10^4$):

$$k_{\rm Re} = f\left({\rm Re}, \frac{R_0}{b_0}\right)$$

([1] diagram 6-1)

Coefficient of effect of the relative curvature radius:

 $\bullet \ 0.5 \le R_0/b_0 \le 1.5$

• $R_0/b_0 > 1.5$

Coefficient of effect of the relative elongation of the cross section:

$$C1 = f\left(\frac{a_0}{b_0}\right)$$

([1] diagram 6-1)

Coefficient of local resistance:

 $\frac{\zeta_{loc} = A1 \cdot B1 \cdot C1}{([1] \text{ diagram 6-1})}$

Darcy friction factor:

See <u>Straight Pipe - Rectangular Cross-Section and Nonuniform Roughness</u> Walls (IDELCHIK)

Darcy friction factor for circular cross-section

$$\lambda_{circ} = f\left(\operatorname{Re}, \frac{\Delta}{D_h}\right)$$

■ Correction for Darcy friction factor for noncircular cross-section

Darcy friction factor for rectangular cross-section $\lambda_{rect} = \lambda_{circ} \cdot k_{non-c} \quad ([1] \text{ diagram 2.6})$

Pressure loss friction factor:

$$\zeta_{fr} = 0.0175 \cdot \delta \cdot \lambda_{rect} \cdot \frac{R_0}{D_h}$$

([1] diagram 6-1)

Reynolds number correction factor that depends on the relative curvature radius:

$$A2 = f\left(\frac{R_0}{b_0}\right) \qquad ([1] \text{ diagram 6.1})$$

R ₀ /b ₀	0.50 - 0.55	>0.55 - 0.70	>0.70 - 1.0	>1.0 - 2.0	>2.0
A2 × 10 ⁻³	4.0	6.0	4.0 - 2.0	1.0	0.6

Total pressure loss coefficient:

• $\text{Re} \ge 10^4$

 $\zeta = k_{\Delta} \cdot k_{\text{Re}} \cdot \zeta_{\text{loc}} + \zeta_{\text{fr}} \qquad ([1] \text{ diagram 6-1})$

• $3 \cdot 10^3 < \text{Re} < 10^4$

$$\zeta = \frac{A2}{Re} + \zeta_{loc} + \zeta_{fr}$$
 ([1] diagram 6-1)

Straight length of equivalent pressure loss (m):

$$L_{eq} = \zeta \cdot \frac{D_h}{\lambda_{rect}}$$

■ Case of relative radius of curvature greater than or equal to 3 ($R_0/b_0 \ge 3$) ([1] diagram 6-2)

Friction factor smooth wall:

• $0.5 \cdot 10^3 < \text{Re} < 6 \cdot 10^3 \text{ (laminar regime)}$ $A_{lam} = 1.97 + 49.1 \cdot \left(\frac{D_h}{2 \cdot R_0}\right)^{1.32} \cdot \left(\frac{b_0}{a_0}\right)^{0.37}$ ([1] diagram 6-2) $\lambda_{el} = A_{lam} \cdot \text{Re}^{-0.46}$ ([1] diagram 6-2) • $7 \cdot 10^3 < \text{Re} < 38 \cdot 10^3 \text{ (turbulent regime)}$

$$A_{turb} = 0.316 + 8.65 \cdot \left(\frac{D_h}{2 \cdot R_0}\right)^{1.32} \cdot \left(\frac{b_0}{a_0}\right)^{0.34}$$
 ([1] diagram 6-2)
$$\lambda_{el} = A_{turb} \cdot \text{Re}^{-0.25}$$
 ([1] diagram 6.2)

Roughness correction factor:

$$C_{f} = rac{\lambda_{r}}{\lambda_{s}}$$

([2] equation 9-3)

with:

 λ_r : Darcy friction factor for rough pipe ($\overline{\Delta}$ = Δ/D_h) at Re

 λ_{s} : Darcy friction factor for hydraulically smooth pipe ($\overline{\Delta}$ = 0) at Re

Pressure loss coefficient (based on the mean velocity in the bend):

$$\zeta = 0.0175 \cdot \delta \cdot \lambda_{el} \cdot C_f \cdot \frac{R_0}{D_h}$$

Straight length of equivalent pressure loss (m):

$$L_{eq} = \zeta \cdot \frac{D_h}{\lambda}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2}$$

([1] diagram 6-1 - 6-2)

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{W_0^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Symbols, Definitions, SI Units:

- a₀ Rectangular cross-section width (m)
- bo Rectangular cross-section height (m)
- D_h Bend hydraulic diameter (m)
- F₀ Cross-sectional area (m²)
- Length measured along the axis (m)
- R₀ Radius of curvature (m)
- δ Curvature angle (°)
- Q Volume flow rate (m³/s)
- wo Mean velocity (m/s)
- G Mass flow rate (kg/s)
- V Fluid volume (m³)
- M Fluid mass (kg)
- Re Reynolds number ()
- Δ Absolute roughness of walls (m)
- $ar{\Delta}$ Relative roughness of walls ()
- $k_{\!\scriptscriptstyle \Delta}$ Coefficient that allows for the effect of the roughness
- k_{Re} Coefficient that allows for the effect of the Reynolds number
- A1 Coefficient that allows for the effect of the angle
- B1 Coefficient that allows for the effect of the relative curvature radius
- C1 Coefficient that allows for the effect of the relative elongation of the cross section
- ζ_{loc} Coefficient of local resistance ()
- λ_{circ} Darcy friction coefficient for circular cross-section ()
- λ_{rect} Darcy friction coefficient for rectangular cross-section ()
- k_{non-c} Correction for Darcy friction factor for noncircular cross-section () ζ_{fr} Pressure loss friction factor ()
- ζ Total pressure loss coefficient (based on the mean velocity in the bend) ()

Leq	Straight length of equivalent pressure loss (m)
λel	Friction coefficient ()
Alam	Laminar coefficient ()
Atur	Turbulent coefficient ()
\mathcal{C}_{f}	Roughness correction factor ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- stabilized flow upstream bend
- length of the straight section downstream: $\geq 10~D_h$
- curvature angle: 0 to 180°
- **\blacksquare** case of relative radius of curvature lower than 3 ($R_0/b_0 < 3$)
 - flow regime: $Re \ge 3.10^3$
- case of relative radius of curvature greater than or equal to 3 ($R_0/b_0 \ge 3$)
 - flow regime: $500 \le \text{Re} \le 38 \cdot 10^3$

for Reynolds number 'Re' lower than 500 or greater than $38\cdot10^3$, the coefficient ' λ_{el} ' is linearly extrapolated.

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

[2] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc © François Corre 2020 Edition: January 2020