Smooth Bend Rectangular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of a bend smoothly curved whose cross-section is rectangular and constant. In addition, the flow is assumed fully developed and stabilized à the entrance bend.

Model formulation:

Hydraulic diameter (m):

$$
\mathrm{D}_{\mathrm{h}}=\frac{2 \cdot a_{0} \cdot b_{0}}{a_{0}+b_{0}}
$$

([1] diagram 6-1)

Cross-section area $\left(m^{2}\right)$:

$$
F_{0}=a_{0} \cdot b_{0}
$$

Length measured along the axis (m):

$$
\mathrm{I}=2 \cdot \pi \cdot R_{0} \cdot \frac{\delta}{360}
$$

Mean velocity (m / s):

$$
w_{0}=\frac{Q}{F_{0}}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho
$$

Fluid volume $\left(\mathrm{m}^{3}\right)$:

$$
\mathrm{V}=F_{0} \cdot 1
$$

Fluid mass (kg):

$$
\mathrm{M}=\mathrm{V} \cdot \rho
$$

Reynolds number:

$$
\operatorname{Re}=\frac{w_{0} \cdot D_{h}}{v}
$$

Relative roughness:

$$
\bar{\Delta}=\frac{\Delta}{D_{h}}
$$

- Case of relative radius of curvature lower than $3\left(\mathrm{R}_{0} / \mathrm{b}_{0}<3\right) \quad$ ([1] diagram 6-1)

Coefficient of effect of the roughness:

$$
k_{\Delta}=f\left(\frac{R_{0}}{b_{0}}, \operatorname{Re}, \bar{\Delta}\right)
$$

([1] diagram 6-1)

- $0.50 \leq \mathrm{R}_{0} / \mathrm{b}_{0} \leq 0.55$

${ }_{\Delta}$	Re	
	$3 \cdot 10^{3}-4 \cdot 10^{4}$	> 4.10^{4}
0	1.0	1.0
0-0.001	1.0	$1+0.5 \cdot 10^{3} \cdot \bar{\Delta}$
> 0.001	1.0	1.5

- $R_{0} / b_{0}>0.55$

$\bar{\Delta}$		Re	
	$3 \cdot 10^{3}-4 \cdot 10^{4}$	$>4 \cdot 10^{4}-2 \cdot 10^{5}$	$>2 \cdot 10^{5}$
0	1.0	1.0	1.0
$0-0.001$	1.0	$\lambda_{\Delta} / \lambda_{\text {sm }}$	$1+10^{3} \cdot \bar{\Delta}$
>0.001	1.0	2.0	2.0

with:
$\lambda_{s m}$: Darcy friction factor for hydraulically smooth pipe ($\bar{\Delta}=0$) at Re
λ_{Δ} : Darcy friction factor for rough pipe ($\bar{\Delta}=\Delta / D_{h}$) at Re
Coefficient of effect of the Reynolds number ($\operatorname{Re} \geq 10^{4}$):

$$
k_{\mathrm{Re}}=f\left(\mathrm{Re}, \frac{R_{0}}{b_{0}}\right)
$$

Coefficient of effect of the angle:

$$
A 1=f(\delta) \quad \text { ([1] diagram 6-1) }
$$

Smooth bend (Ro/bo <=3) Coefficient of effect of the angle IDELCHIK - Diagram 6-1 - graph (a)

Coefficient of effect of the relative curvature radius:

$$
B 1=f\left(\frac{R_{0}}{b_{0}}\right)
$$

([1] diagram 6-1)

- $R_{0} / b_{0}>1.5$

Coefficient of effect of the relative elongation of the cross section:

$$
C 1=f\left(\frac{a_{0}}{b_{0}}\right)
$$

Coefficient of effect of the relative elongation of the section IDELCHIK - Diagram 6-1 - graph (d)

Coefficient of local resistance:

$$
\zeta_{\text {loc }}=A 1 \cdot B 1 \cdot C 1 \quad \text { ([1] diagram 6-1) }
$$

Darcy friction factor:

See Straight Pipe - Rectangular Cross-Section and Nonuniform Roughness Walls (IDELCHIK)

- Darcy friction factor for circular cross-section

$$
\lambda_{\text {circ }}=f\left(\operatorname{Re}, \frac{\Delta}{D_{h}}\right)
$$

Darcy Friction Factor
Circular cross-section pipes IDELCHIK (nonuniform roughness walls)

- laminar flow (Re $\mathbf{~ 2 0 0 0) : ~}$

$$
k_{\text {non }-c}=f\left(b_{0} / a_{0}\right) \quad \text { ([1] diagram 2.6) }
$$

Straight pipe with rectangular cross-section Correction factor for rectangular cross-section ($\mathrm{Re}<=2000$) IDELCHIK - Diagram 2-6

- turbulent flow (Re > 2000):

$$
k_{\text {non }-c}=f\left(b_{0} / a_{0}\right) \quad \text { ([1] diagram 2.6) }
$$

Straight pipe with rectangular cross-section Correction factor for rectangular cross-section ($\mathrm{Re} \boldsymbol{>} \mathbf{2 0 0 0 \text {) }}$ IDELCHIK - Diagram 2-6

Darcy friction factor for rectangular cross-section

$$
\lambda_{\text {rect }}=\lambda_{\text {circ }} \cdot k_{\text {non-c }} \quad \text { ([1] diagram 2.6) }
$$

Pressure loss friction factor:
$\zeta_{\text {fr }}=0.0175 \cdot \delta \cdot \lambda_{\text {rect }} \cdot \frac{R_{0}}{D_{h}}$
([1] diagram 6-1)

Reynolds number correction factor that depends on the relative curvature radius:

$$
A 2=f\left(\frac{R_{0}}{b_{0}}\right)
$$

([1] diagram 6.1)

R_{0} / b_{0}	$0.50-0.55$	$>0.55-0.70$	$>0.70-1.0$	$>1.0-2.0$	>2.0
$A 2 \times 10^{-3}$	4.0	6.0	$4.0-2.0$	1.0	0.6

Smooth bend (Ro/bo <3)
Reynolds number correction factor IDELCHIK - Diagram 6-1

Total pressure loss coefficient:

- $\operatorname{Re} \geq 10^{4}$

$$
\zeta=k_{\Delta} \cdot k_{\mathrm{Re}} \cdot \zeta_{\text {loc }}+\zeta_{f r} \quad \text { ([1] diagram 6-1) }
$$

- $3 \cdot 10^{3}<\operatorname{Re}<10^{4}$

$$
\zeta=\frac{A 2}{R e}+\zeta_{l o c}+\zeta_{t r}
$$

([1] diagram 6-1)

Straight length of equivalent pressure loss (m):

$$
L_{\text {eq }}=\zeta \cdot \frac{D_{h}}{\lambda_{\text {rect }}}
$$

Friction factor smooth wall:

- $0.5 \cdot 10^{3}<\operatorname{Re}<6 \cdot 10^{3}$ (laminar regime)
$A_{l a m}=1.97+49.1 \cdot\left(\frac{D_{h}}{2 \cdot R_{0}}\right)^{1.32} \cdot\left(\frac{b_{0}}{a_{0}}\right)^{0.37}$
([1] diagram 6-2)

$$
\begin{equation*}
\lambda_{e l}=A_{l a m} \cdot \operatorname{Re}^{-0.46} \tag{1}
\end{equation*}
$$

- $7 \cdot 10^{3}<\operatorname{Re}<38 \cdot 10^{3}$ (turbulent regime)

$$
A_{\text {turb }}=0.316+8.65 \cdot\left(\frac{D_{h}}{2 \cdot R_{0}}\right)^{1.32} \cdot\left(\frac{b_{0}}{a_{0}}\right)^{0.34}
$$

([1] diagram 6-2)

$$
\begin{equation*}
\lambda_{e l}=A_{\text {turb }} \cdot \mathrm{Re}^{-0.25} \tag{1}
\end{equation*}
$$

Smooth bend with rectangular cross-section ($\mathrm{Ro} / \mathrm{Dh}>=3$)
Coefficient 'lambda el' (bolao $=0.5$)
IDELCHIK - Diagram 6-2

([1] diagram 6-2 with
$\left.b_{0} / a_{0}=0.5\right)$

Roughness correction factor:

$C_{f}=\frac{\lambda_{r}}{\lambda_{s}}$
([2] equation 9-3)
with:
λ_{r} : Darcy friction factor for rough pipe ($\bar{\Delta}=\Delta / D_{h}$) at Re
λ_{s} : Darcy friction factor for hydraulically smooth pipe $(\bar{\Delta}=0)$ at Re

Pressure loss coefficient (based on the mean velocity in the bend):

$$
\zeta=0.0175 \cdot \delta \cdot \lambda_{e l} \cdot C_{f} \cdot \frac{R_{0}}{D_{h}}
$$

Straight length of equivalent pressure loss (m):

$$
L_{\text {eq }}=\zeta \cdot \frac{D_{h}}{\lambda}
$$

Total pressure loss (Pa):

$$
\Delta P=\zeta \cdot \frac{\rho \cdot w_{0}{ }^{2}}{2}
$$

([1] diagram 6-1-6-2)
Total head loss of fluid (m):
$\Delta H=\zeta \cdot \frac{w_{0}{ }^{2}}{2 \cdot g}$
Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:

ao Rectangular cross-section width (m)
bo Rectangular cross-section height (m)
$D_{h} \quad$ Bend hydraulic diameter (m)
Fo Cross-sectional area (m^{2})
I Length measured along the axis (m)
Ro Radius of curvature (m)
$\delta \quad$ Curvature angle (${ }^{\circ}$)
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
wo Mean velocity (m / s)
$G \quad$ Mass flow rate (kg/s)
$\checkmark \quad$ Fluid volume (m^{3})
M Fluid mass (kg)
Re Reynolds number ()
$\Delta \quad$ Absolute roughness of walls (m)
$\bar{\Delta} \quad$ Relative roughness of walls ()
$k_{\Delta} \quad$ Coefficient that allows for the effect of the roughness
$k_{\text {Re }} \quad$ Coefficient that allows for the effect of the Reynolds number
A1 Coefficient that allows for the effect of the angle
B1 Coefficient that allows for the effect of the relative curvature radius
C1 Coefficient that allows for the effect of the relative elongation of the cross section
Gloc Coefficient of local resistance ()
$\lambda_{\text {circ }} \quad$ Darcy friction coefficient for circular cross-section ()
$\lambda_{\text {rect }} \quad$ Darcy friction coefficient for rectangular cross-section ()
knon-c Correction for Darcy friction factor for noncircular cross-section ()
$\zeta_{f r} \quad$ Pressure loss friction factor ()
$\zeta \quad$ Total pressure loss coefficient (based on the mean velocity in the bend) ()

Leq Straight length of equivalent pressure loss (m)
$\lambda_{\text {el }} \quad$ Friction coefficient ()
Alam Laminar coefficient ()
Atur Turbulent coefficient ()
$C_{f} \quad$ Roughness correction factor ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- stabilized flow upstream bend
- length of the straight section downstream: $\geq 10 D_{h}$
- curvature angle: 0 to 180°
- case of relative radius of curvature lower than $3\left(\mathrm{R}_{0} / \mathrm{bo}_{0}<3\right)$
- flow regime: $\operatorname{Re} \geq 3 \cdot 10^{3}$

■ case of relative radius of curvature greater than or equal to $3\left(R_{0} / b_{0} \geq 3\right)$

- flow regime: $500 \leq \operatorname{Re} \leq 38 \cdot 10^{3}$
for Reynolds number 'Re' lower than 500 or greater than $38 \cdot 10^{3}$, the coefficient ' $\lambda_{e l}$ ' is linearly extrapolated.

Example of application:

Calculate

Complementary results

Designation	Symbol	Value	Unit
Hydraulic diameter	Dh	0.06666667	m
Passage cross-section area	F0	0.005	m^{2}
Sides ratio	bo/a0	0.5	
Relative radius of curvature	R0/b0	3.5	
Relative roughness	$\bar{\Delta}$	0.00015	
Reynolds number	Re	66440.97	
Friction factor (Diagram 6-2)	λ el	0.05230567	
Darcy friction factor (roughness pipe)	λr	0.02024362	
Darcy friction factor (hydraulically smooth pipe)	$\lambda \mathrm{s}$	0.01962486	
Roughness correction	Cf	1.031529	
Pressure loss coefficient (based on the mean bend velocity)	ζ	0.2224741	
Hydraulic power loss	Wh	0.5551873	W
Straight length of equivalent pressure loss	Leq	0.7326559	m

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik [2] Internal Flow System, Second Edition, D.S. Miller

