

General Head Drop Formulations for Steady State and Incompressible Fluid Rectangular Cross-Section

Model description:

This component model brings together the main formulas relating to the calculation of pressure drops for incompressible fluids. These formulas apply to pipes of rectangular section and for stabilized flows.

Model formulation:

Cross-section area (m²): $S = a \cdot b$

Cross-section perimeter (m):

$$\mathsf{P}=\mathsf{2}\cdot\bigl(\mathsf{a}+\mathsf{b}\bigr)$$

Hydraulic diameter (m):

$$d_{h} = \frac{4 \cdot S}{P}$$

Mean velocity (m/s):

$$V = \frac{Qv}{S}$$

Mass flow rate (kg/s): $Qm = Qv \cdot \rho$

Reynolds number:

$$\mathsf{Re} = \frac{V \cdot d_h}{v}$$

Flow coefficient Av (m²):

$$Av = Qv \cdot \sqrt{\frac{\rho}{\Delta P}}$$

$$Av = S \cdot \sqrt{\frac{2}{\zeta}}$$

Flow coefficient Cv (gal/min US):

$$Cv = 41650 \cdot Av$$

or:

$$Cv = Qv_{[gpm US]} \cdot \sqrt{\frac{G_{[-]}}{\Delta P_{[psi]}}}$$

where:

Qv Volume flow rate (gal/min US)

- ΔP Pressure loss (psi)
- G Specific gravity of fluid (1 for water at 60°F)

Flow coefficient Kv (m³/h):

 $Kv = 36023 \cdot Av$

or:

$$Kv = Qv_{[m^3/h]} \cdot \sqrt{\frac{G_{[-]}}{\Delta P_{[bar]}}}$$

where:

- Qv Volume flow rate (m³/h)
- ΔP Pressure loss (bar)
- G Specific gravity of fluid (1 for water at $15^{\circ}C$)

Pressure loss coefficient ():

$$\zeta = \lambda \cdot \frac{L}{d_h}$$

Pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot V^2}{2}$$

Head loss of fluid (m):

$$\Delta h = \zeta \cdot \frac{V^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Qv$

Symbols, Definitions, SI Units:


- a Rectangular cross-section width (m)
- b Rectangular cross-section height (m)

dh	Pipe hydraulic diameter (m)
5	Cross-sectional perimeter (m)
5	Cross-sectional area (m²)
Qv	Volume flow rate (m³/s)
Qm	Mass flow rate (kg/s)
V	Mean velocity (m/s)
Re	Reynolds number ()
Av	Flow coefficient (m²)
Cv	Flow coefficient (USG/min)
Κv	Flow coefficient (m³/h)
ζ	Pressure loss coefficient ()
λ	Friction factor ()
L	Straight length (m)
ΔP	Pressure loss (Pa)
∆h	Head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
P V	Fluid kinematic viscosity (m²/s)
	Gravitational acceleration (m/s^2)
9	

Validity range:

• Equations for the flow coefficients Av, Cv and Kv are valid only for turbulent flows.

Example of input data and results:

HydrauCalc © François Corre 2017-2018

Edition: February 2018