
www.hydraucalc.com

Square-Edge Orifice Flowmeter D and D/2 pressure tapings (CRANE)

Model description:

This model of component determines the fluid flow through a square-edge orifice flowmeter with D & D/2 pressure tappings, according to the reference document [1].

Model formulation:

Diameter ratio:

$$\beta = \frac{D_1}{D_2}$$

Orifice cross-sectional area (m2):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Pipe cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity in orifice (m/s):

$$V_1 = \frac{q}{A_1}$$

Mean velocity in pipe (m/s):

$$V_2 = \frac{q}{A_2}$$

Reynolds number in orifice:

$$\mathsf{Re}_1 = \frac{v_1 \cdot D_1}{v}$$

Reynolds number in pipe:

$$\mathsf{Re}_2 = \frac{\mathsf{v}_2 \cdot \mathsf{D}_2}{\mathsf{v}}$$

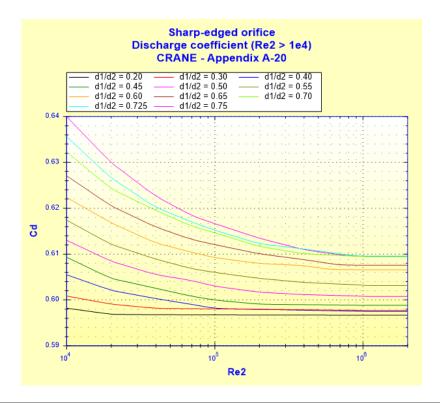
Flow coefficient:


$$C = f\left(\text{Re}_2, \frac{d_1}{d_2}\right)$$

([1] appendix A-20)

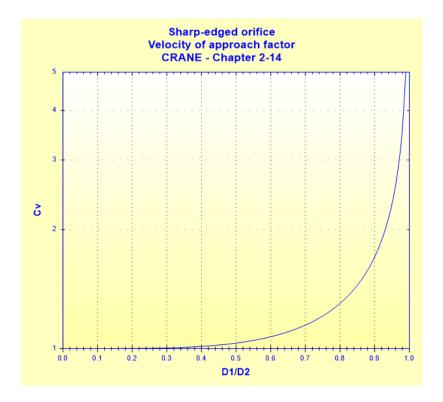
 $\blacksquare \ 3 \leq Re_2 \leq 10^4$


\blacksquare Re₂ > 10^4


Discharge coefficient:

$$C_d = C \cdot \sqrt{1 - \beta^4}$$
 ([1] appendix A-20)

 $\blacksquare \ 3 \leq Re_2 \leq 10^4$



\blacksquare Re₂ > 10^4

Velocity of approach factor:

$$C_{v} = \frac{1}{\sqrt{1-\beta^{4}}}$$
 ([1] 2-14)

Volume flow rate (m 3/s):

$$q = A_1 \cdot C \cdot \sqrt{\frac{2 \cdot \Delta \rho}{\rho}}$$

([1] Equation 2-23)

Mass flow rate (kg/s):

$$W = q \cdot \rho$$

Resistance coefficient of orifice (based on the mean pipe velocity):

$$K_o = \frac{1 - \beta^2}{C^2 \cdot \beta^4}$$

([1] appendix A-20)

Net pressure loss (Pa):

$$\Delta \varpi = K_o \cdot \frac{\rho \cdot V_2^2}{2}$$

Net head loss (m):

$$\Delta h = K_0 \cdot \frac{{v_2}^2}{2 \cdot g}$$

Net hydraulic power loss (W):

$$Wh = \Delta w \cdot q$$

Measured head loss (m):

$$\Delta H = \frac{\Delta P}{\rho \cdot g}$$

Symbols, Definitions, SI Units:

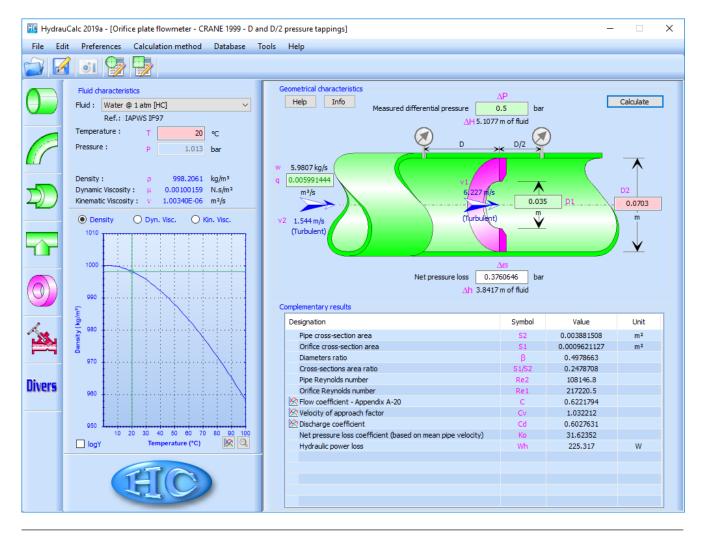
Orifice diameter (m) D_1 Internal pipe diameter (m) D_2 β Diameter ratio () Orifice cross-sectional area (m²) A_1 Pipe cross-sectional area (m²) A_2 Mean velocity in orifice (m/s) **V**1 Mean velocity in pipe (m/s) **V**2 Reynolds number in orifice () Re_1 Reynolds number in pipe () Re₂ C Flow coefficient () $C_{\rm d}$ Discharge coefficient () C_{v} Velocity of approach factor () Volume flow rate (m³/s) q ΔP Measured pressure loss (Pa) Mass flow rate (kg/s) W Kο Resistance coefficient of orifice (based on the mean pipe velocity) () Net pressure loss (Pa) $\Delta \varpi$ Net head loss of fluid (m) Δh Hydraulic power loss (W) Wh Measured head loss of fluid (m) ΔH Fluid density (kg/m³) ρ

Notation of equations according to sources.

Validity range:

ν

g


any flow regime: laminar and turbulent

Fluid kinematic viscosity (m²/s)

Gravitational acceleration (m/s^2)

- stabilized flow upstream of the orifice
 - note: 1) for Reynolds number "Re2" between 3 and 10^4 , and diameter ratio "D1/D2" lower than 0.2 or greater than 0.8, the flow coefficient "C" is extrapolated
 - 2) for Reynolds number "Re2" between 10^4 and 2.10^6 , and diameter ratio "D₁/D₂" lower than 0.2 or greater than 0.75, the flow coefficient "C" is extrapolated

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc Edition: March 2019

© François Corre 2019