

Symmetric dividing sharp-edged T-junction Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a symmetric dividing sharp-edged T-junction with three legs of equal area.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the three branches (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

$$A_3 = \pi \cdot \frac{D_3^2}{4}$$

with
$$D_1 = D_2 = D_3$$

Volume flow rate in the common branch (m^3/s) :

$$Q_3 = Q_1 + Q_2$$

Mean velocity in the left branch (m/s):

$$U_1 = \frac{Q_1}{A_1}$$

Mean velocity in the right branch (m/s):

$$U_2 = \frac{Q_2}{A_2}$$

Mean velocity in the common branch (m/s):

$$U_3 = \frac{Q_3}{A_3}$$

Mass flow rate in the left branch (kg/s):

$$G_1 = Q_1 \cdot \rho$$

Mass flow rate in the right branch (kg/s):

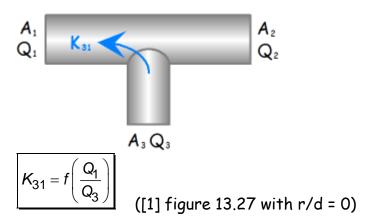
$$G_2 = Q_2 \cdot \rho$$

Mass flow rate in the common branch (kg/s):

$$G_3 = Q_3 \cdot \rho$$

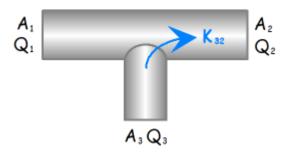
Reynolds number in the left branch:

$$Re_1 = \frac{U_1 \cdot D_1}{v}$$

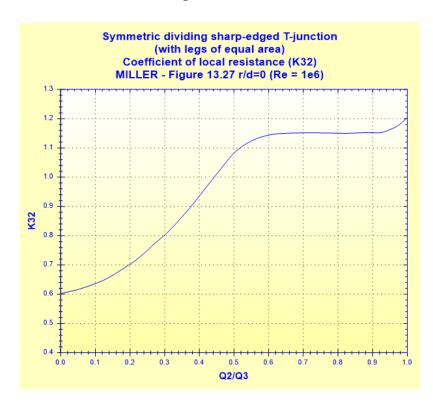

Reynolds number in the right branch:

$$Re_2 = \frac{U_2 \cdot D_2}{v}$$

Reynolds number in the common branch:


$$Re_3 = \frac{U_3 \cdot D_3}{v}$$

Pressure loss coefficient of the left branch (based on mean velocity in the common branch):



Pressure loss coefficient of the right branch (based on mean velocity in the common branch):

$$K_{32} = f\left(\frac{Q_2}{Q_3}\right)$$

([1] figure 13.27 with r/d = 0)

Pressure loss in the left branch (Pa):

$$\Delta P_{31} = K_{31} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.3)

Pressure loss in the right branch (Pa):

$$\Delta P_{32} = K_{32} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.4)

Head loss of fluid in the left branch (m):

$$\Delta H_{31} = K_{31} \cdot \frac{U_3^2}{2 \cdot g}$$

Head loss of fluid in the right branch (m):

$$\Delta H_{32} = K_{32} \cdot \frac{U_3^2}{2 \cdot g}$$

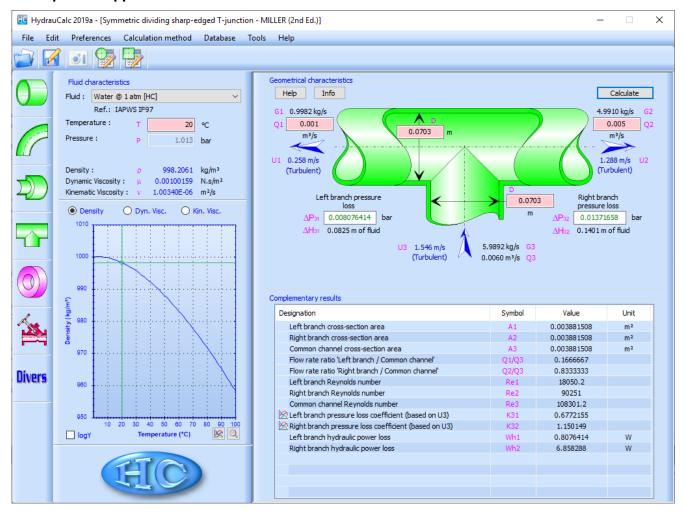
Hydraulic power loss in the left branch (W):

$$Wh_{31} = \Delta P_{31} \cdot Q_1$$

Hydraulic power loss in the right branch (W):

$$Wh_{32} = \Delta P_{32} \cdot Q_2$$

Symbols, Definitions, SI Units:


- D₁ Diameter of the left branch (m)
- D₂ Diameter of the right branch (m)
- D_3 Diameter of the common branch
- A₁ Cross-sectional area of the left branch (m²)
- A₂ Cross-sectional area of the right branch (m²)
- A_3 Cross-sectional area of the common branch (m^2)
- Q_1 Volume flow rate in the left branch (m^3/s)
- U_1 Mean velocity in the left branch (m/s)
- Q_2 Volume flow rate in the right branch (m³/s)
- U_2 Mean velocity in the right branch (m/s)
- Q_3 Volume flow rate in the common branch (m³/s)
- U_3 Mean velocity in the common branch (m/s)
- G_1 Mass flow rate in the left branch (kg/s)
- G_2 Mass flow rate in the right branch (kg/s)
- G_3 Mass flow rate in the common branch (kg/s)
- Re1 Reynolds number in the left branch ()
- Re_2 Reynolds number in the right branch ()
- Re₃ Reynolds number in the common branch ()

K_{31}	Pressure loss coefficient of the left branch (based on mean velocity in
	the common branch) ()
	• • •
K_{32}	Pressure loss coefficient of the right branch (based on mean velocity in
	the common branch) ()
ΔP_{31}	Pressure loss in the left branch (Pa)
ΔP_{32}	Pressure loss in the right branch (Pa)
ΔH_{31}	Head loss of fluid in the left branch (m)
ΔH_{32}	Head loss of fluid in the right branch (m)
Wh_{31}	Hydraulic power loss in the left branch (W)
Wh ₃₂	Hydraulic power loss in the right branch (W)
***************************************	riyar dane power 1035 in the right of them (W)
ρ	Fluid density (kg/m³)
-	, , ,
ν	Fluid kinematic viscosity (m²/s)
g	Gravitational acceleration (m/s²)
	· · ·

Validity range:

- turbulent flow regime ($Re_3 \ge 10^5$)
- three legs of equal area

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller (1990)

HydrauCalc © François Corre 2019 Edition: March 2019