
www.hydraucalc.com

Symmetric dividing sharp-edged T-junction (standard threaded type) Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a symmetric dividing sharp-edged T-junction standard threaded type.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the right branch (m²):

$$\mathsf{F}_{1s} = \pi \cdot \frac{\mathsf{D}_{s}^{\ 2}}{\mathsf{4}}$$

Cross-sectional area of the left branch (m^2) :

$$\mathsf{F}_{2s} = \pi \cdot \frac{\mathsf{D}_{s}^{\,2}}{4}$$

Cross-sectional area of the common branch (m²):

$$\mathsf{F}_c = \pi \cdot \frac{D_c^2}{4}$$

Volume flow rate in the common branch (m³/s):

$$\mathbf{Q}_c = \mathbf{Q}_{1s} + \mathbf{Q}_{2s}$$

Mean velocity in the right branch (m/s):

$$w_{1s} = \frac{Q_{1s}}{F_{1s}}$$

Mean velocity in the left branch (m/s):

$$W_{2s} = \frac{Q_{2s}}{F_{2s}}$$

Mean velocity in the common branch (m/s):

$$W_c = \frac{Q_c}{F_c}$$

Mass flow rate in the right branch (kg/s):

$$\boxed{\mathsf{G}_{1s} = \mathsf{Q}_{1s} \cdot \rho}$$

Mass flow rate in the left branch (kg/s):

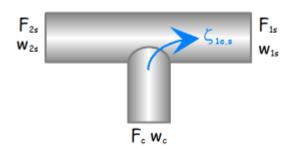
$$G_{2s} = Q_{2s} \cdot \rho$$

Mass flow rate in the common branch (kg/s):

$$G_c = Q_c \cdot \rho$$

Reynolds number in the right branch:

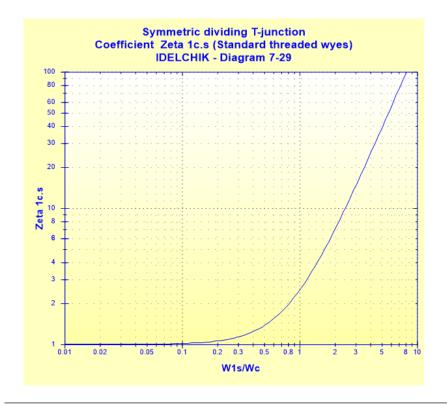
$$\mathsf{Re}_{\mathsf{1s}} = \frac{w_{\mathsf{1s}} \cdot D_{\mathsf{s}}}{v}$$

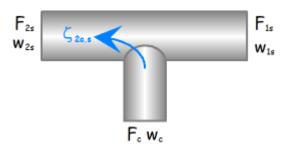

Reynolds number in the left branch:

$$\mathsf{Re}_{2s} = \frac{w_{2s} \cdot D_{s}}{v}$$

Reynolds number in the common branch:

$$Re_c = \frac{W_c \cdot D_c}{V}$$

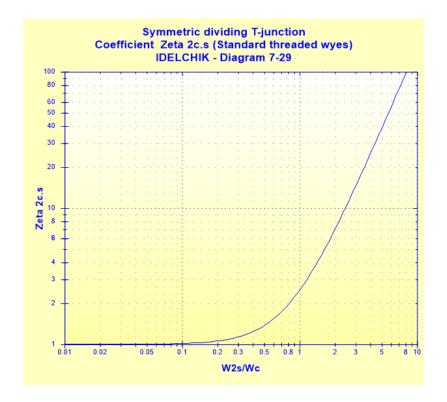

Pressure loss coefficient of the right branch (based on mean velocity in the common branch):


$$\zeta_{1c.s} = 1 + k_1 \cdot \left(\frac{w_{1s}}{w_c}\right)^2$$

([1] diagram 7.29 - Division of flow)

with: $k_1 = 1.5$

Pressure loss coefficient of the left branch (based on mean velocity in the common branch):



Note: for the left branch, the formulas are the same as those of the right branch, with subscript 2 instead of subscript 1.

$$\zeta_{2c.s} = 1 + k_2 \cdot \left(\frac{w_{2s}}{w_c}\right)^2$$

with: $k_2 = 1.5$

([1] diagram 7.29 - Division of flow)

Pressure loss in the right branch (Pa):

$$\Delta P_{1c.s} = \zeta_{1c.s} \cdot \frac{\rho \cdot W_c^2}{2}$$

Pressure loss in the left branch (Pa):

$$\Delta P_{2c.s} = \zeta_{2c.s} \cdot \frac{\rho \cdot W_c^2}{2}$$

Head loss of fluid in the right branch (m):

$$\Delta H_{1c.s} = \zeta_{1c.s} \cdot \frac{w_c^2}{2 \cdot g}$$

Head loss of fluid in the left branch (m):

$$\Delta H_{2c.s} = \zeta_{2c.s} \cdot \frac{w_c^2}{2 \cdot g}$$

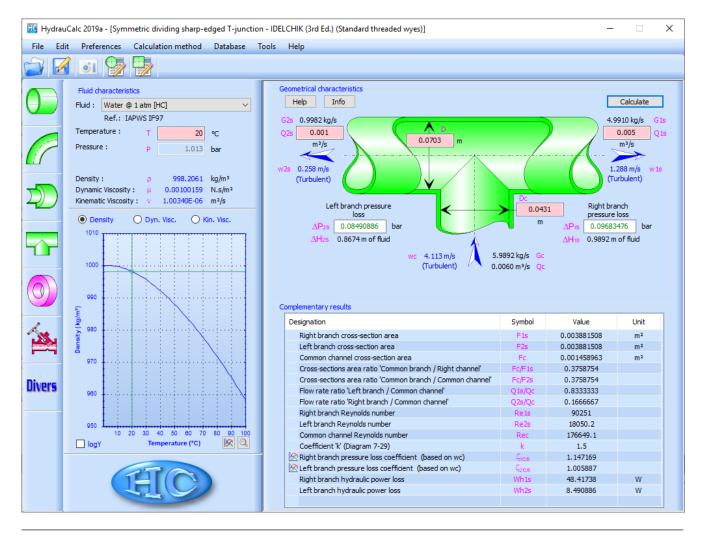
Hydraulic power loss in the right branch (W):

$$Wh_{1s} = \Delta P_{1c.s} \cdot Q_{1s}$$

Hydraulic power loss in the left branch (W):

$$Wh_{2s} = \Delta P_{2c.s} \cdot Q_{2s}$$

Symbols, Definitions, SI Units:


- Ds Diameter of the right and left branches (m)
- D_c Diameter of the common branch (m)
- F_{1s} Cross-sectional area of the right branch (m^2)

 F_{2s} Cross-sectional area of the left branch (m²) Cross-sectional area of the common branch (m²) F_c Q_{1s} Volume flow rate in the right branch (m³/s) Mean velocity in the right branch (m/s)W15 Volume flow rate in the left branch (m³/s) Q_{2s} W2s Mean velocity in the left branch (m/s) Volume flow rate in the common branch (m³/s) Q_c Mean velocity in the common branch (m/s)Wc Mass flow rate in the right branch (kg/s) G_{1s} G2s Mass flow rate in the left branch (kg/s) G_c Mass flow rate in the common branch (kg/s) Reis Reynolds number in the right branch () Re_{2s} Reynolds number in the left branch () Rec Reynolds number in the common branch () Pressure loss coefficient of the right branch (based on mean velocity in ζ_{1c.s} the common branch) () Pressure loss coefficient of the left branch (based on mean velocity in 52cs the common branch) () Pressure loss in the right branch (Pa) ΔP_{1s} Pressure loss in the left branch (Pa) ΔP_{2s} ΔH_{15} Head loss of fluid in the right branch (m) ΔH_{2s} Head loss of fluid in the left branch (m) Wh₁₅ Hydraulic power loss in the right branch (W) Hydraulic power loss in the left branch (W) Wh25 Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²) g

Validity range:

- turbulent flow regime ($Re_c \ge 10^4$)
- diameter of common branch $(D_c) \le$ diameter of right and left branches (D_s)

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc Edition: March 2019

© François Corre 2019