

Symmetric dividing sharp-edged T-junction (welded type) Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a symmetric dividing sharp-edged T-junction welded type.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the right branch (m²):

$$\mathsf{F}_{1s} = \pi \cdot \frac{D_s^2}{4}$$

Cross-sectional area of the left branch (m²):

$$\mathsf{F}_{2s} = \pi \cdot \frac{{D_s}^2}{4}$$

Cross-sectional area of the common branch (m²):

$$\mathsf{F}_{c} = \pi \cdot \frac{D_{c}^{2}}{4}$$

Volume flow rate in the common branch (m^3/s) :

$$\mathbf{Q}_{c}=\mathbf{Q}_{1s}+\mathbf{Q}_{2s}$$

Mean velocity in the right branch (m/s):

$$W_{1s} = \frac{Q_{1s}}{F_{1s}}$$

Mean velocity in the left branch (m/s):

$$W_{2s} = \frac{Q_{2s}}{F_{2s}}$$

Mean velocity in the common branch (m/s):

$$W_c = \frac{Q_c}{F_c}$$

Mass flow rate in the right branch (kg/s):

$$G_{1s} = Q_{1s} \cdot \rho$$

Mass flow rate in the left branch (kg/s):

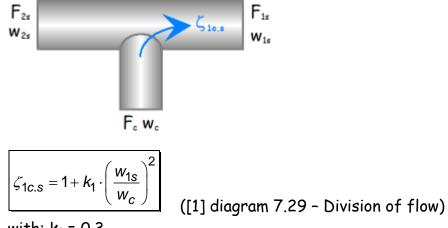
$$\mathbf{G}_{2s} = \mathbf{Q}_{2s} \cdot \boldsymbol{\rho}$$

Mass flow rate in the common branch (kg/s):

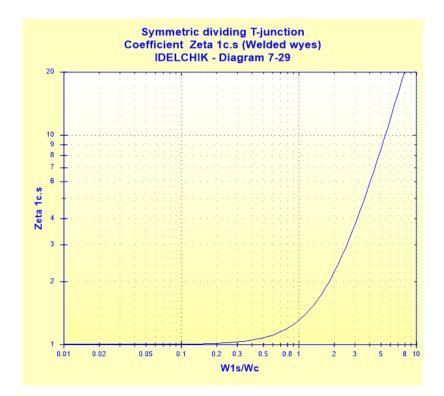
$$G_c = Q_c \cdot \rho$$

Reynolds number in the right branch:

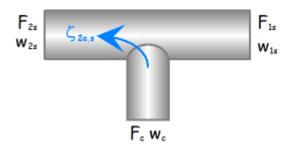
$$\mathsf{Re}_{1s} = \frac{W_{1s} \cdot D_{s}}{v}$$


Reynolds number in the left branch:

$$\mathsf{Re}_{2s} = \frac{W_{2s} \cdot D_s}{v}$$

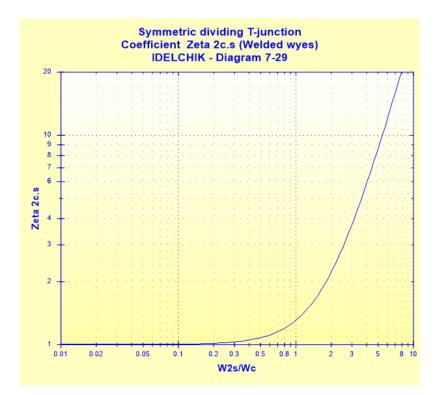

Reynolds number in the common branch:

$$\mathsf{Re}_c = \frac{\mathsf{W}_c \cdot \mathsf{D}_c}{\mathsf{V}}$$


Pressure loss coefficient of the right branch (based on mean velocity in the common branch):

with: k1 = 0.3

Pressure loss coefficient of the left branch (based on mean velocity in the common branch):



Note: for the left branch, the formulas are the same as those of the right branch, with subscript 2 instead of subscript 1.

$$\zeta_{2c.s} = 1 + k_2 \cdot \left(\frac{w_{2s}}{w_c}\right)^2$$

([1] diagram 7.29 - Division of flow)

with: $k_2 = 0.3$

Pressure loss in the right branch (Pa):

$$\Delta P_{1c.s} = \zeta_{1c.s} \cdot \frac{\rho \cdot W_c^2}{2}$$

Pressure loss in the left branch (Pa):

$$\Delta P_{2c.s} = \zeta_{2c.s} \cdot \frac{\rho \cdot W_c^2}{2}$$

Head loss of fluid in the right branch (m):

$$\Delta H_{1c.s} = \zeta_{1c.s} \cdot \frac{W_c^2}{2 \cdot g}$$

Head loss of fluid in the left branch (m):

$$\Delta H_{2c.s} = \zeta_{2c.s} \cdot \frac{W_c^2}{2 \cdot g}$$

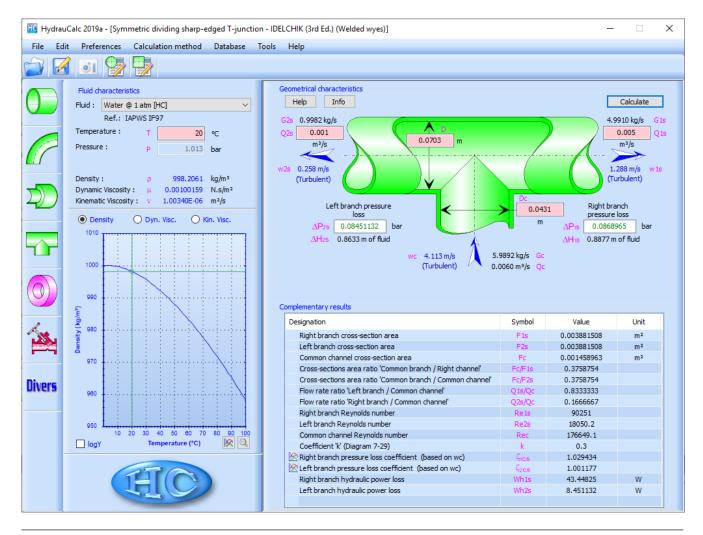
Hydraulic power loss in the right branch (W):

$$Wh_{1s} = \Delta P_{1c.s} \cdot Q_{1s}$$

Hydraulic power loss in the left branch (W):

 $Wh_{2s} = \Delta P_{2c.s} \cdot Q_{2s}$

Symbols, Definitions, SI Units:


- D_s Diameter of the right and left branches (m)
- D_c Diameter of the common branch (m)
- F_{1s} Cross-sectional area of the right branch (m²)

F _{2s}	Cross-sectional area of the left branch (m²)
Fc	Cross-sectional area of the common branch (m²)
Q _{1s}	Volume flow rate in the right branch (m³/s)
W _{1s}	Mean velocity in the right branch (m/s)
Q2s	Volume flow rate in the left branch (m^3/s)
W2s	Mean velocity in the left branch (m/s)
Qc	Volume flow rate in the common branch (m³/s)
Wc	Mean velocity in the common branch (m/s)
G_{1s}	Mass flow rate in the right branch (kg/s)
G2s	Mass flow rate in the left branch (kg/s)
Gc	Mass flow rate in the common branch (kg/s)
Re _{1s}	Reynolds number in the right branch ()
Re _{2s}	Reynolds number in the left branch ()
Rec	Reynolds number in the common branch ()
ζıc.s	Pressure loss coefficient of the right branch (based on mean velocity in
	the common branch) ()
ζ2c.s	Pressure loss coefficient of the left branch (based on mean velocity in
	the common branch) ()
ΔP_{1s}	Pressure loss in the right branch (Pa)
ΔP_{2s}	Pressure loss in the left branch (Pa)
ΔH_{1s}	Head loss of fluid in the right branch (m)
ΔH_{2s}	Head loss of fluid in the left branch (m)
Wh _{1s}	Hydraulic power loss in the right branch (W)
Wh _{2s}	Hydraulic power loss in the left branch (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- turbulent flow regime ($Re_c \ge 10^4$)
- diameter of common branch $(D_c) \leq$ diameter of right and left branches (D_s)

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc © François Corre 2019 Edition: March 2019