

Dividing sharp-edged junction Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a dividing sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the lateral branch (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Cross-sectional area of the common branch and the straight branch (m²):

$$\mathsf{A}_3 = \pi \cdot \frac{D_3^2}{4}$$

Volume flow rate in the common branch (m^3/s) :

$$\boldsymbol{Q}_3 = \boldsymbol{Q}_1 + \boldsymbol{Q}_2$$

Mean velocity in the lateral branch (m/s):

$$U_1 = \frac{Q_1}{A_1}$$

Mean velocity in the straight branch (m/s):

$$U_2 = \frac{Q_2}{A_3}$$

Mean velocity in the common branch (m/s):

$$U_3 = \frac{Q_3}{A_3}$$

Mass flow rate in the lateral branch (kg/s):

$$G_1 = Q_1 \cdot \rho$$

Mass flow rate in the straight branch (kg/s):

$$\mathbf{G}_{2}=\mathbf{Q}_{2}\cdot\boldsymbol{\rho}$$

Mass flow rate in the common branch (kg/s):

$$G_3 = Q_3 \cdot \rho$$

Reynolds number in the lateral branch:

$$\mathsf{Re}_1 = \frac{U_1 \cdot D_1}{v}$$

Reynolds number in the straight branch:

$$\mathsf{Re}_2 = \frac{U_2 \cdot D_3}{v}$$

Reynolds number in the common branch:

$$\mathsf{Re}_3 = \frac{U_3 \cdot D_3}{v}$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

• Angle $\theta = 45^{\circ}$

$$K_{31} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$$
 ([1] figure 13.19+)

• Angle
$$\theta = 60^{\circ}$$

 $K_{31} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right)$ ([1] figure 13.20+)

• Angle
$$\theta = 90^{\circ}$$

$$K_{31} = f\left(\frac{Q_1}{Q_3}, \frac{A_1}{A_3}\right) \tag{1}$$

([1] figure 13.21+)

For any angles between 45 ° and 120 °, the coefficient K_{31} is obtained by linear interpolation between the values of K_{31} calculated at 45 °, 60 °, 90 ° and 120 °.

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):

Pressure loss in the lateral branch (Pa):

$$\Delta P_{31} = K_{31} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.3)

Pressure loss in the straight branch (Pa):

$$\Delta P_{32} = K_{32} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.4)

Head loss of fluid in the lateral branch (m):

$$\Delta H_{31} = K_{31} \cdot \frac{U_3^2}{2 \cdot g}$$

Head loss of fluid in the straight branch (m):

$$\Delta H_{32} = K_{32} \cdot \frac{U_3^2}{2 \cdot g}$$

Hydraulic power loss in the lateral branch (W):

 $Wh_{31} = \Delta P_{31} \cdot Q_1$

Hydraulic power loss in the straight branch (W):

 $Wh_{32} = \Delta P_{32} \cdot Q_2$

Symbols, Definitions, SI Units:

D1	Diameter of the lateral branch (m)
D₃	Diameter of the common branch and the straight branch (m)
A_1	Cross-sectional area of the lateral branch (m²)
A ₃	Cross-sectional area of the common branch and the straight branch (m²)
Q_1	Volume flow rate in the lateral branch (m³/s)
U1	Mean velocity in the lateral branch (m/s)
Q ₂	Volume flow rate in the straight branch (m^3/s)
U2	Mean velocity in the straight branch (m/s)
Q₃	Volume flow rate in the common branch (m^3/s)
U ₃	Mean velocity in the common branch (m/s)
G1	Mass flow rate in the lateral branch (kg/s)
G ₂	Mass flow rate in the straight branch (kg/s)
G ₃	Mass flow rate in the common branch (kg/s)
Re ₁	Reynolds number in the lateral branch ()
Re ₂	Reynolds number in the straight branch ()
Re ₃	Reynolds number in the common branch ()
θ	Angle of the lateral branch (m)
K ₃₁	Pressure loss coefficient of the lateral branch (based on mean velocity in
	the common branch) ()
K ₃₂	Pressure loss coefficient of the straight branch (based on mean velocity
	in the common branch) ()
ΔP_{31}	Pressure loss in the lateral branch (Pa)
ΔP_{32}	Pressure loss in the straight branch (Pa)
ΔH_{31}	Head loss of fluid in the lateral branch (m)
ΔH_{32}	Head loss of fluid in the straight branch (m)
Wh ₃₁	Hydraulic power loss in the lateral branch (W)
Wh ₃₂	Hydraulic power loss in the straight branch (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- turbulent flow regime ($\text{Re}_3 \ge 10^5$)
- angle of the lateral branch: between 45° and 120° for the pressure loss coefficient "K₃₁" between 45° and 90° for the pressure loss coefficient "K₃₂"

• cross-sections area ratio $A_1/A_3 \ge 0.1$ note: for cross-sections area ratios A_1/A_3 lower than 0.1 the pressure loss coefficients "K₃₁" and "K₃₂" are extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller (1990)

HydrauCalc © François Corre 2019 Edition: March 2019