Dividing sharp-edged junction Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a dividing sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the lateral branch $\left(m^{2}\right)$:
$\mathrm{A}_{1}=\pi \cdot \frac{D_{1}^{2}}{4}$

Cross-sectional area of the common branch and the straight branch $\left(\mathrm{m}^{2}\right)$:
$\mathrm{A}_{3}=\pi \cdot \frac{D_{3}^{2}}{4}$

Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$):

$$
Q_{3}=Q_{1}+Q_{2}
$$

Mean velocity in the lateral branch (m / s):

$$
U_{1}=\frac{Q_{1}}{A_{1}}
$$

Mean velocity in the straight branch (m / s):

$$
U_{2}=\frac{Q_{2}}{A_{3}}
$$

Mean velocity in the common branch (m / s):

$$
U_{3}=\frac{Q_{3}}{A_{3}}
$$

Mass flow rate in the lateral branch (kg/s):

$$
G_{1}=Q_{1} \cdot \rho
$$

Mass flow rate in the straight branch (kg / s):

$$
G_{2}=Q_{2} \cdot \rho
$$

Mass flow rate in the common branch (kg / s):

$$
G_{3}=Q_{3} \cdot \rho
$$

Reynolds number in the lateral branch:

$$
\mathrm{Re}_{1}=\frac{U_{1} \cdot D_{1}}{v}
$$

Reynolds number in the straight branch:

$$
\mathrm{Re}_{2}=\frac{U_{2} \cdot D_{3}}{v}
$$

Reynolds number in the common branch:

$$
\mathrm{Re}_{3}=\frac{U_{3} \cdot D_{3}}{v}
$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

Angle $\theta=45^{\circ}$

$$
K_{31}=f\left(\frac{Q_{1}}{Q_{3}}, \frac{A_{1}}{A_{3}}\right)
$$

MILLER - Figure 13.19+ $(\operatorname{Re}=1 \mathrm{e} 6)$

Angle $\theta=60^{\circ}$

$$
K_{31}=f\left(\frac{Q_{1}}{Q_{3}}, \frac{A_{1}}{A_{3}}\right)
$$

([1] figure 13.20+)

Dividing sharp-edged junction - branch angle 60° Coefficient of local resistance (K31) MILLER - Figure 13.20+ $(\operatorname{Re}=1 \mathrm{e} 6)$

Angle $\theta=90^{\circ}$
$K_{31}=f\left(\frac{Q_{1}}{Q_{3}}, \frac{A_{1}}{A_{3}}\right)$
([1] figure 13.21+)

- Angle $\theta=120^{\circ}$

$$
K_{31}=f\left(\frac{Q_{1}}{Q_{3}}, \frac{A_{1}}{A_{3}}\right)
$$

([1] figure 13.22)

For any angles between 45° and 120°, the coefficient K_{31} is obtained by linear interpolation between the values of K_{31} calculated at $45^{\circ}, 60^{\circ}, 90^{\circ}$ and 120°.

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):
A_{3} C

Angle $\theta=45^{\circ}-90^{\circ}$
$K_{32}=f\left(\frac{Q_{1}}{Q_{3}}\right)$
([1] figure 13.23)

Pressure loss in the lateral branch (Pa):

$$
\Delta P_{31}=K_{31} \cdot \frac{\rho \cdot U_{3}^{2}}{2}
$$

([1] equation 13.3)

Pressure loss in the straight branch (Pa):

$$
\begin{equation*}
\Delta P_{32}=K_{32} \cdot \frac{\rho \cdot U_{3}^{2}}{2} \tag{1}
\end{equation*}
$$

Head loss of fluid in the lateral branch (m):

$$
\Delta H_{31}=K_{31} \cdot \frac{U_{3}^{2}}{2 \cdot g}
$$

Head loss of fluid in the straight branch (m):

$$
\Delta H_{32}=K_{32} \cdot \frac{U_{3}^{2}}{2 \cdot g}
$$

Hydraulic power loss in the lateral branch (W):

$$
W h_{31}=\Delta P_{31} \cdot Q_{1}
$$

Hydraulic power loss in the straight branch (W):

$$
W h_{32}=\Delta P_{32} \cdot Q_{2}
$$

Symbols, Definitions, SI Units:

$D_{1} \quad$ Diameter of the lateral branch (m)
$D_{3} \quad$ Diameter of the common branch and the straight branch (m)
$A_{1} \quad$ Cross-sectional area of the lateral branch (m^{2})
$A_{3} \quad$ Cross-sectional area of the common branch and the straight branch $\left(\mathrm{m}^{2}\right)$
Q1 Volume flow rate in the lateral branch ($\mathrm{m}^{3} / \mathrm{s}$)
$U_{1} \quad$ Mean velocity in the lateral branch (m / s)
Q2 Volume flow rate in the straight branch ($\mathrm{m}^{3} / \mathrm{s}$)
$U_{2} \quad$ Mean velocity in the straight branch (m / s)
Q3 Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$)
$U_{3} \quad$ Mean velocity in the common branch (m / s)
$G_{1} \quad$ Mass flow rate in the lateral branch (kg / s)
$\mathrm{G}_{2} \quad$ Mass flow rate in the straight branch (kg / s)
$G_{3} \quad$ Mass flow rate in the common branch (kg/s)
$\mathrm{Re}_{1} \quad$ Reynolds number in the lateral branch ()
$\mathrm{Re}_{2} \quad$ Reynolds number in the straight branch ()
$\mathrm{Re}_{3} \quad$ Reynolds number in the common branch ()
$\theta \quad$ Angle of the lateral branch (m)
$K_{31} \quad$ Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch) ()
K_{32} Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) ()
$\Delta \mathrm{P}_{31} \quad$ Pressure loss in the lateral branch (Pa)
$\Delta \mathrm{P}_{32} \quad$ Pressure loss in the straight branch (Pa)
$\Delta H_{31} \quad$ Head loss of fluid in the lateral branch (m)
$\Delta H_{32} \quad$ Head loss of fluid in the straight branch (m)
W_{31} Hydraulic power loss in the lateral branch (W)
Wh32 Hydraulic power loss in the straight branch (W)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime $\left(\operatorname{Re}_{3} \geq 10^{5}\right)$
- angle of the lateral branch:
between 45° and 120° for the pressure loss coefficient " K_{31} " between 45° and 90° for the pressure loss coefficient "K32"
- cross-sections area ratio $A_{1} / A_{3} \geq 0.1$
note: for cross-sections area ratios A_{1} / A_{3} lower than 0.1 the pressure loss coefficients " K_{31} " and " K_{32} " are extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller (1990)

