

Dividing sharp-edged junction Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a dividing sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the lateral branch (m²):

$$\mathsf{F}_{s}=\pi\cdot\frac{D_{s}^{2}}{4}$$

Cross-sectional area of the common branch and the straight branch (m²):

$$\mathsf{F}_{c} = \pi \cdot \frac{D_{c}^{2}}{4}$$

Volume flow rate in the common branch (m^3/s) :

$$\mathbf{Q}_{c} = \mathbf{Q}_{s} + \mathbf{Q}_{st}$$

Mean velocity in the lateral branch (m/s):

$$W_{\rm s} = \frac{Q_{\rm s}}{F_{\rm s}}$$

Mean velocity in the straight branch (m/s):

$$W_{st} = \frac{Q_{st}}{F_c}$$

Mean velocity in the common branch (m/s):

$$W_c = \frac{\mathsf{Q}_c}{\mathsf{F}_c}$$

Mass flow rate in the lateral branch (kg/s):

$$\boldsymbol{G}_{\!\scriptscriptstyle S} = \boldsymbol{Q}_{\!\scriptscriptstyle S} \cdot \boldsymbol{\rho}$$

Mass flow rate in the straight branch (kg/s):

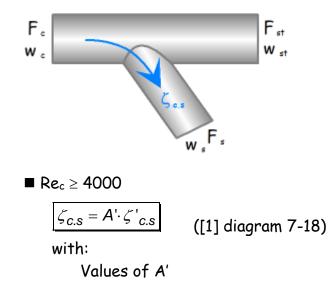
$$\boldsymbol{G}_{st} = \boldsymbol{Q}_{st} \cdot \boldsymbol{\rho}$$

Mass flow rate in the common branch (kg/s):

$$G_c = Q_c \cdot \rho$$

Reynolds number in the lateral branch:

$$\operatorname{Re}_{s} = \frac{W_{s} \cdot D_{s}}{v}$$


Reynolds number in the straight branch:

$$\mathsf{Re}_{st} = \frac{W_{st} \cdot D_c}{v}$$

Reynolds number in the common branch:

$$\mathsf{Re}_c = \frac{w_c \cdot D_c}{v}$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

F _s / F _c	≤ 0	.35	> 0	.35
ର୍ ଣ୍ଣ / ର୍ ଣ୍ଣ	≤ 0.4	> 0.4	≤ 0.6	> 0.6
Α'	$1.1 - 0.7 \cdot \frac{Q_s}{Q_c}$	0.85	$1.0 - 0.6 \cdot \frac{Q_s}{Q_c}$	0.6

([1] table 7-4)

$$\zeta'_{c.s} = 1 + \left(\frac{w_s}{w_c}\right)^2 - 2 \cdot \left(\frac{w_s}{w_c}\right) \cdot \cos(\alpha)$$

([1] diagram 7-18)

$$\zeta_{c.s} = \left(k_1 + 1\right) \cdot \zeta_{c.s}^{t} + \frac{150}{\text{Re}_c}$$

([1] equation §31)

with:

Values of k_1

ବ୍ଟ/ବ୍ଟ	Alpha			
	30°	45°	60°	90°
0	0.9	0.9	0.9	0.9
0.2	1.8	1.8	1.5	1.1
0.4	3.4	2.9	2.2	1.3
0.6	6.1	4.3	3	1.5
0.8	7.2	4.3	2.7	1.4
1	6	3.6	2.3	1.3

([1] table 7-7)

$$\zeta_{c.s}^{t} = A' \cdot \left[1 + \left(\frac{w_s}{w_c} \right)^2 - 2 \cdot \frac{w_s}{w_c} \cdot \cos(\alpha) \right] - K'_{st} \cdot \left(\frac{w_s}{w_c} \right)^2$$

([1] equation 7.3)

with:

Values of A'

F _s / F _c	≤ 0	.35	> 0	.35
Q, / Q,	≤ 0.4	> 0.4	≤ 0.6	> 0.6
Α'	$1.1 - 0.7 \cdot \frac{Q_s}{Q_c}$	0.85	$1.0 - 0.6 \cdot \frac{Q_s}{Q_c}$	0.6

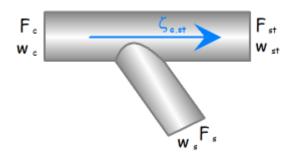
([1] table 7-4)

 $K'_{st} = 0$

■ $2000 < Re_c < 4000$

linear interpolation

$$\zeta_{c.s} = \zeta'_{c.s} \cdot \left(1 - \frac{\text{Re}_{c} - 2000}{2000}\right) + \zeta^{t}_{c.s} \cdot \left(\frac{\text{Re}_{c} - 2000}{2000}\right)$$


with:

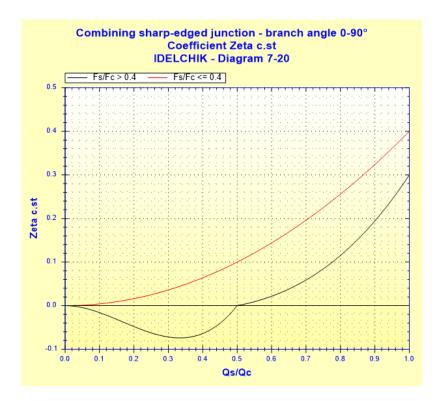
 $\zeta_{c.s}^{l}$ = laminar coefficient obtained with Re_c = 2000 $\zeta_{c.s}^{t}$ = turbulent coefficient obtained with Re_c = 4000

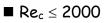
 $F_s/F_c = 1$ and $Q_s/Q_c = 0.7$

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):

 $\blacksquare \ Re_c \geq 4000$

$$\zeta_{c.st} = \tau_{st} \cdot \left(\frac{Q_s}{Q_c}\right)^2 \qquad ([1] \text{ diagram 7-20})$$


with:


Values of τ_{st}

F _s / F _c	≤ 0.4	> 0.4	
ପ୍ଟ / ପ୍ଟ	0 - 1.0	≤ 0.5	> 0.5
τ _{st}	0.4	$2 \cdot \left(2 \cdot \frac{Q_s}{Q_c} - 1\right)$	$0.3 \cdot \left(2 \cdot \frac{Q_s}{Q_c} - 1\right)$

([1]

diagram 7-20)

$$\zeta_{c.st} = 3 \cdot \zeta_{c.st}^{t} + \frac{33}{\text{Re}_{c}}$$
 ([1] equation §31)
with:

$$\zeta_{c.st}^{t} = \tau_{st} \cdot \left(\frac{Q_s}{Q_c}\right)^2 \qquad ([1] \text{ equation 7-4})$$

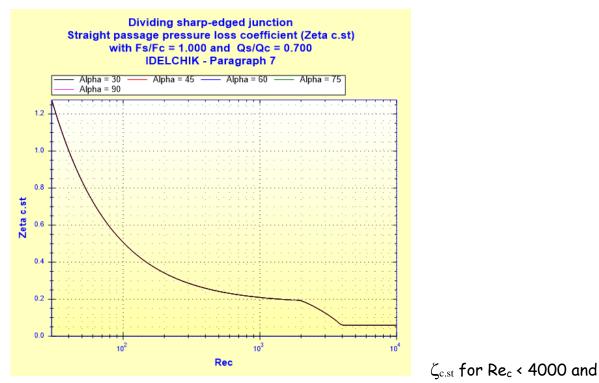
with:

Values of τ_{st}

F _s / F _c	≤ 0.4	> 0.4	
ପ୍ଟ / ପ୍ଟ	0 - 1.0	≤ 0.5	> 0.5
τ _{st}	0.4	$2 \cdot \left(2 \cdot \frac{Q_s}{Q_c} - 1\right)$	$0.3 \cdot \left(2 \cdot \frac{Q_s}{Q_c} - 1\right)$

([1] diagram 7-20)

■ $2000 < Re_c < 4000$


linear interpolation

$$\zeta_{c.st} = \zeta'_{c.st} \cdot \left(1 - \frac{\text{Re}_c - 2000}{2000}\right) + \zeta^t_{c.st} \cdot \left(\frac{\text{Re}_c - 2000}{2000}\right)$$

with:

 $\zeta^{l}_{c,st}$ = laminar coefficient obtained with Re $_{c}$ = 2000

 $\zeta^{\dagger}_{c,\text{st}}$ = turbulent coefficient obtained with Re $_{c}$ = 4000

with F_s/F_c = 1 and Q_s/Q_c = 0.7

Pressure loss in the lateral branch (Pa):

$$\Delta P_{c.s} = \zeta_{c.s} \cdot \frac{\rho \cdot W_c^2}{2}$$

Pressure loss in the straight branch (Pa):

$$\Delta P_{c.st} = \zeta_{c.st} \cdot \frac{\rho \cdot W_c^2}{2}$$

Head loss of fluid in the lateral branch (m):

$$\Delta H_{c.s} = \zeta_{c.s} \cdot \frac{W_c^2}{2 \cdot g}$$

Head loss of fluid in the straight branch (m):

$$\Delta H_{c.st} = \zeta_{c.st} \cdot \frac{W_c^2}{2 \cdot g}$$

Hydraulic power loss in the lateral branch (W):

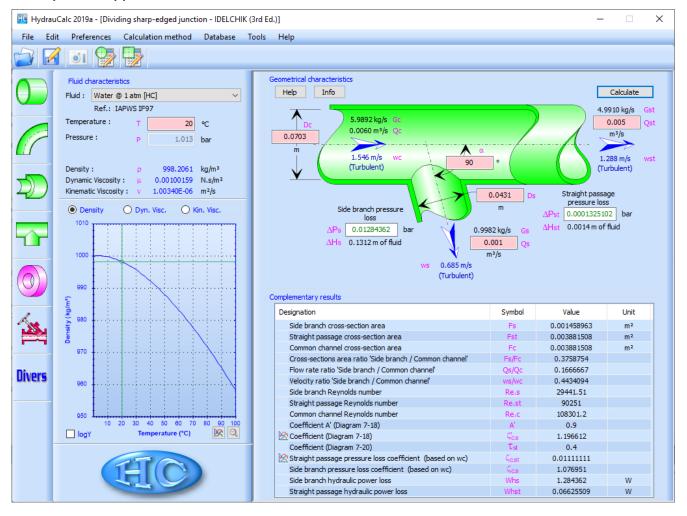
$$Wh_{s} = \Delta P_{c.s} \cdot Q_{s}$$

Hydraulic power loss in the straight branch (W):

$$Wh_{st} = \Delta P_{c.st} \cdot Q_{st}$$

Symbols, Definitions, SI Units:

D₅	Diameter of the lateral branch (m)
Dc	Diameter of the common branch and the straight branch (m)
F₅	Cross-sectional area of the lateral branch (m^2)
F _c	Cross-sectional area of the common branch and the straight branch (m^2)
Q₅	Volume flow rate in the lateral branch (m^3/s)
Ws	Mean velocity in the lateral branch (m/s)
Qst	Volume flow rate in the straight branch (m^3/s)
Wst	Mean velocity in the straight branch (m/s)
Qc	Volume flow rate in the common branch (m^3/s)
Wc	Mean velocity in the common branch (m/s)
Gs	Mass flow rate in the lateral branch (kg/s)
Gst	Mass flow rate in the straight branch (kg/s)
Gc	Mass flow rate in the common branch (kg/s)
Re₅	Reynolds number in the lateral branch ()
Rest	Reynolds number in the straight branch ()
Rec	Reynolds number in the common branch ()
α	Angle of the lateral branch (m)
ζl ςc.s	Pressure loss coefficient of the lateral branch in laminar flow ()
$\zeta^{\dagger}_{c.st}$	Pressure loss coefficient of the straight branch in turbulent flow ()
ζc.s	Pressure loss coefficient of the lateral branch (based on mean velocity in
	the common branch) ()
ζc.st	Pressure loss coefficient of the straight branch (based on mean velocity
	in the common branch) ()
ΔP_{s}	Pressure loss in the lateral branch (Pa)
ΔP_{st}	Pressure loss in the straight branch (Pa)
ΔH_s	Head loss of fluid in the lateral branch (m)
ΔH_{st}	Head loss of fluid in the straight branch (m)
Wh₅	Hydraulic power loss in the lateral branch (W)
Whst	Hydraulic power loss in the straight branch (W)


 ρ Fluid density (kg/m³)

- v Fluid kinematic viscosity (m^2/s)
- g Gravitational acceleration (m/s²)

Validity range:

- angle of the lateral branch: between 30° and 90°

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc © François Corre 2019 Edition: March 2019