

Combining sharp-edged junction Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a combining sharp-edged junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio between the diameter of the lateral branch and that of the common branch:

$$\beta_b = \frac{d_b}{d_c}$$

Cross-sectional area of the lateral branch (m²):

$$A_b = \pi \cdot \frac{d_b^2}{4}$$

Cross-sectional area of the common branch and the straight branch (m^2) :

$$A_c = \pi \cdot \frac{d_c^2}{4}$$

Volume flow rate in the common branch (m^3/s) :

$$Q_c = Q_b + Q_r$$

Mean velocity in the lateral branch (m/s):

$$V_b = \frac{Q_b}{A_b}$$

Mean velocity in the straight branch (m/s):

$$V_r = \frac{Q_r}{A_c}$$

Mean velocity in the common branch (m/s):

$$V_c = \frac{Q_c}{A_c}$$

Mass flow rate in the lateral branch (kg/s):

$$G_b = Q_b \cdot \rho$$

Mass flow rate in the straight branch (kg/s):

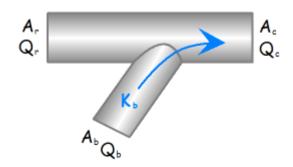
$$G_r = Q_r \cdot \rho$$

Mass flow rate in the common branch (kg/s):

$$G_c = Q_c \cdot \rho$$

Reynolds number in the lateral branch:

$$\mathsf{Re}_b = \frac{v_b \cdot d_b}{v}$$


Reynolds number in the straight branch:

$$Re_r = \frac{v_r \cdot d_c}{v}$$

Reynolds number in the common branch:

$$Re_c = \frac{v_c \cdot d_c}{v}$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

$$\boxed{ K_b = C_b \cdot \left[1 + D_b \cdot \left(\frac{Q_b}{Q_c} \cdot \frac{1}{{\beta_b}^2} \right)^2 - E_b \cdot \left(1 - \frac{Q_b}{Q_c} \right)^2 - F_b \cdot \frac{1}{{\beta_b}^2} \cdot \left(\frac{Q_b}{Q_c} \right)^2 \right] }$$

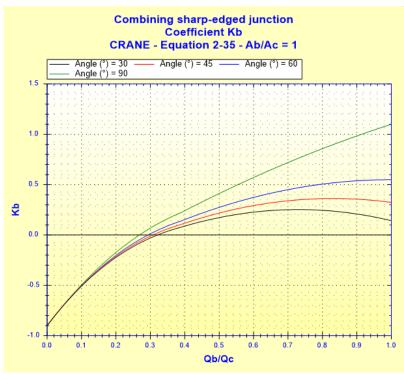
([1] equation 2-35)

with:

Values of Db, Eb, Fb

Angle	DÞ	E♭	Fb
30°	1	2	1.74
45°	1	2	1.41
60°	1	2	1
90°	1	2	0

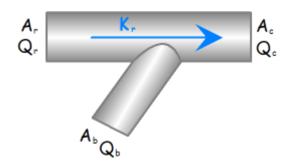
([1] table 2-1)


For any angles between 30 ° and 90 °, the coefficients D_b , E_b , F_b are obtained by linear interpolation of the coefficients of the table 2-1.

Values of Cb

Q ₀ / Q ₀	≤ (0.4	> (0.4
β²ь	≤ 0.35	> 0.35	≤ 0.35	> 0.35
c _ь	1	$0.9 \cdot \left(1 - \frac{Q_b}{Q_c}\right)$	1	0.55

([1] table


2-2)

([1] equation 2-35 with

Ab/Ac = 1

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):

■ Angle $\leq 60^{\circ}$

$$K_r = C_r \cdot \left[1 + D_r \cdot \left(\frac{Q_b}{Q_c} \cdot \frac{1}{{\beta_b}^2} \right)^2 - E_r \cdot \left(1 - \frac{Q_b}{Q_c} \right)^2 - F_r \cdot \frac{1}{{\beta_b}^2} \cdot \left(\frac{Q_b}{Q_c} \right)^2 \right]$$

([1] equation 2-

35)

with:

Values of Cr , Dr, Er ,Fr

Angle	C _r	Dr	E _r	Fr
30°	1	0	1	1.74
45°	1	0	1	1.41
60°	1	0	1	1

([1] table 2-1)

For arbitrary angles between 30 ° and 60 °, the coefficients C_r , D_r , E_r , F_r are obtained by linear interpolation of the coefficients of table 2-1.

■ Angle =
$$90^{\circ}$$

$$K_r = 1.55 \cdot \left(\frac{Q_b}{Q_c}\right) - \left(\frac{Q_b}{Q_c}\right)^2$$

([1] equation 2-36)

([1] equations 2-35 with

Ab/Ac = 1 and 2-36

For any angles between 60 $^{\circ}$ and 90 $^{\circ}$, the coefficient Kr is obtained by linear interpolation between the value of Kr calculated at 60 $^{\circ}$ and that calculated at 90 $^{\circ}$.

Pressure loss in the lateral branch (Pa):

$$\Delta P_b = K_b \cdot \frac{\rho \cdot V_c^2}{2}$$

Pressure loss in the straight branch (Pa):

$$\Delta P_r = K_r \cdot \frac{\rho \cdot V_c^2}{2}$$

Head loss of fluid in the lateral branch (m):

$$\Delta H_b = K_b \cdot \frac{{v_c}^2}{2 \cdot g}$$

Head loss of fluid in the straight branch (m):

$$\Delta H_r = K_r \cdot \frac{{v_c}^2}{2 \cdot g}$$

Hydraulic power loss in the lateral branch (W):

$$Wh_b = \Delta P_b \cdot Q_b$$

Hydraulic power loss in the straight branch (W):

$$Wh_r = \Delta P_r \cdot Q_r$$

Symbols, Definitions, SI Units:

	. .	c . 1			/ \
d_b	Diameter o	t the	lateral	branch	(m)

d_c Diameter of the common branch and the straight branch (m)

 β_b Ratio between the diameter of the lateral branch and that of the common branch ()

Ab Cross-sectional area of the lateral branch (m²)

 A_c Cross-sectional area of the common branch and the straight branch (m²)

 Q_b Volume flow rate in the lateral branch (m^3/s)

 v_b Mean velocity in the lateral branch (m/s)

 Q_r Volume flow rate in the straight branch (m³/s)

 v_r Mean velocity in the straight branch (m/s)

 Q_c Volume flow rate in the common branch (m³/s)

 v_c Mean velocity in the common branch (m/s)

 G_b Mass flow rate in the lateral branch (kg/s)

 G_r Mass flow rate in the straight branch (kg/s)

 G_c Mass flow rate in the common branch (kg/s)

Reb Reynolds number in the lateral branch ()

Rer Reynolds number in the straight branch ()

 Re_c Reynolds number in the common branch ()

 α Angle of the lateral branch (m)

K_b Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch) ()

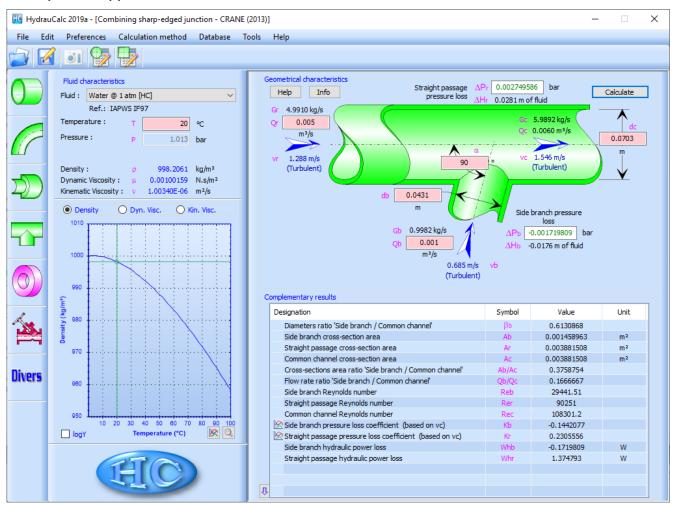
 K_r Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) ()

 ΔP_b Pressure loss in the lateral branch (Pa)

 ΔP_r Pressure loss in the straight branch (Pa)

 ΔH_b Head loss of fluid in the lateral branch (m)

ΔH_r	Head loss of fluid in the straight branch (m)
Wh_{b}	Hydraulic power loss in the lateral branch (W)
Wh_r	Hydraulic power loss in the straight branch (W)


- ρ Fluid density (kg/m³)
- v Fluid kinematic viscosity (m^2/s)
- g Gravitational acceleration (m/s²)

note: the indices $_{b,\,r}$ and $_{c}$ correspond respectively to the indices $_{branch,\,run}$ and $_{combined}$ of the reference document.

Validity range:

- turbulent flow regime ($Re_c \ge 10^4$)
- angle of the lateral branch: between 30° and 90°

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 2013

HydrauCalc Edition: March 2019