

Gradual Expansion Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the head loss (pressure drop) generated by the flow in a gradual expansion. The head loss by friction in the gradual expansion is taken into account for cone angles less than 60 °, beyond this angle the head loss by friction becomes negligible.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{d_1}{d_2}$$

Top angle of cone (°):

$$\alpha = 2 \cdot \tan^{-1} \left(\frac{d_2 - d_1}{2 \cdot I} \right)$$

Minor cross-sectional area (m²):

$$A_1 = \pi \cdot \frac{d_1^2}{4}$$

Major cross-sectional area (m²):

$$\mathsf{A}_2 = \pi \cdot \frac{{d_2}^2}{4}$$

Mean velocity in minor diameter (m/s):

$$V_1 = \frac{Q}{A_1}$$

Mean velocity in major diameter (m/s):

$$V_2 = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho_m$$

Fluid volume in the truncated cone (m³):

$$V = I \cdot \frac{\pi}{3} \cdot \left(\left(\frac{d_1}{2} \right)^2 + \left(\frac{d_2}{2} \right)^2 + \left(\frac{d_1}{2} \right) \cdot \left(\frac{d_2}{2} \right) \right)$$

Fluid mass in the truncated cone (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho_m$$

Reynolds number in minor diameter:

$$N_{\rm Re_1} = \frac{V_1 \cdot d_1}{v}$$

Reynolds number in major diameter:

$$N_{\text{Re}_2} = \frac{V_2 \cdot d_2}{v}$$

Darcy friction factor:

Colebrook-White equation ([1] equation 3.6)

Friction pressure loss coefficient:

([1] equation 11.7 with f =

Total pressure loss coefficient (based on mean velocity in minor diameter):

■ 0° ≤ α ≤ 20°:

$$K_{1} = 8.30 \cdot \left[\tan\left(\frac{\alpha}{2}\right) \right]^{1.75} \cdot \left(1 - \beta^{2}\right)^{2} + \frac{f \cdot \left(1 - \beta^{4}\right)}{8 \cdot \sin\left(\frac{\alpha}{2}\right)}$$
([1] equation 11.8)

■ $20^{\circ} \le \alpha < 60^{\circ}$: • $0 \le \beta < 0.5$

$$\left[K_{1} = \left\{ 1.366 \cdot \sin\left[\left(2 \cdot \left(\alpha - 15 \right)^{1/2} \right) \right] - 0.170 - 3.28 \cdot \left(\left(0.0625 - \beta^{4} \right) \cdot \sqrt{\frac{\alpha - 20}{40}} \right) \right\} \cdot \left(1 - \beta^{2} \right)^{2} + \frac{f \cdot \left(1 - \beta^{4} \right)}{8 \cdot \sin\left(\frac{\alpha}{2} \right)} \right] + \frac{f \cdot \left(1 - \beta^{2} \right)^{2}}{8 \cdot \sin\left(\frac{\alpha}{2} \right)} + \frac{f \cdot \left(1 - \beta^{2} \right)^{2}}{8 \cdot \sin\left(\frac{\alpha}{2} \right)} \right]$$

([1] equation 11.9a)

•
$$0.5 \le \beta \le 1$$

$$\mathcal{K}_{1} = \left\{ 1.366 \cdot \sin\left[\left(2 \cdot (\alpha - 15)^{1/2} \right) \right] - 0.170 \right\} \cdot \left(1 - \beta^{2} \right)^{2} + \frac{f \cdot (1 - \beta^{4})}{8 \cdot \sin\left(\frac{\alpha}{2}\right)} \right\}$$
([1] equation

11.9b)

$$\mathcal{K}_{1} = \left[1.205 - 3.28 \cdot \left(0.0625 - \beta^{4}\right) - 12.8 \cdot \beta^{6} \cdot \sqrt{\frac{\alpha - 60}{120}}\right] \cdot \left(1 - \beta^{2}\right)^{2}$$
([1]

equation 11.10a)

Local resistance coefficient:

■
$$0^{\circ} \le \alpha < 60^{\circ}$$
:
 $K_{L1} = K_1 - K_{fr1}$
■ $60^{\circ} \le \alpha \le 180^{\circ}$:

$$K_{L1} = K_{1}$$

Total pressure loss (Pa):

$$\Delta \boldsymbol{P} = \boldsymbol{K}_1 \cdot \frac{\boldsymbol{\rho}_m \cdot {\boldsymbol{V}_1}^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K_1 \cdot \frac{V_1^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Symbols,	Definitions,	SI	Units:
----------	--------------	----	--------

d1	Minor diameter (m)
d ₂	Major diameter (m)

- β Ratio of small to large diameter ()
- α Top angle of cone (°)
- I Truncated cone length (m)
- A₁ Minor cross-sectional area (m²)
- A₂ Major cross-sectional area (m²)
- Q Volume flow rate (m³/s)
- V1 Mean velocity in minor diameter (m/s)
- V₂ Mean velocity in major diameter (m/s)
- G Mass flow rate (kg/s)
- V Fluid volume in the truncated cone (m³)
- M Fluid mass in the truncated cone (kg)
- NRe1 Reynolds number in minor diameter ()
- NRe₂ Reynolds number in major diameter ()
- f Darcy friction factor ()
- ϵ Absolute roughness of the cone walls (m)
- K_{fr1} Friction pressure loss coefficient ()
- K_{L1} Local resistance coefficient ()
- K₁ Total pressure loss coefficient (based on mean velocity in minor diameter) ()
- ΔP Total pressure loss (Pa)
- ΔH Total head loss of fluid (m)
- Wh Hydraulic power loss (W)
- ρ_m Fluid density (kg/m³)
- v Fluid kinematic viscosity (m²/s)
- g Gravitational acceleration (m/s²)

Validity range:

• turbulent flow regime in minor diameter (NRe₁ \ge 10⁴)

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc © François Corre 2018 Edition: November 2018