

Miter Bend Circular Cross-Section (CRANE)

Model description:

This model of component calculates the head loss (pressure drop) of a miter bend whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the bend.

Model formulation:

Cross-section area (m2):

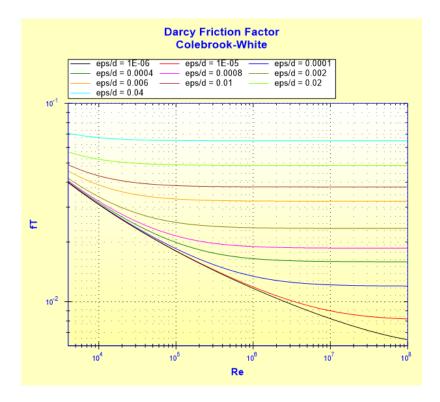
$$A = \pi \cdot \frac{d^2}{4}$$

Mean velocity (m/s):

$$V = \frac{q}{A}$$

Mass flow rate (kg/s):

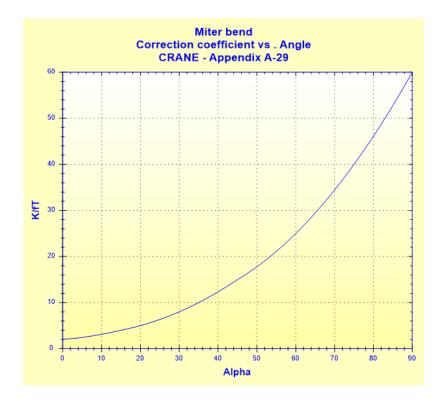
$$W = q \cdot \rho$$


Reynolds number:

$$Re = \frac{v \cdot d}{v}$$

Darcy friction factor:

$$f_T = \frac{1}{\left[2 \cdot \log \left(\frac{\varepsilon}{3.7 \cdot d} + \frac{2.51}{\text{Re} \cdot \sqrt{f_T}}\right)\right]^2}$$


Colebrook-White equation

Resistance coefficient for a miter bend:

$$K = f(\alpha, f_T)$$
 ([1] Appendix A-29)

α	K	K/f _⊤
0	2 f _⊤	2
15	4 f _⊤	4
30	8 f _⊤	8
45	15 f _⊤	15
60	25 f _⊤	25
75	40 f _⊤	40
90	60 f _⊤	60

Total pressure loss coefficient (based on mean velocity in bend):

$$K_B = K$$

Total pressure loss (Pa):

$$\Delta P = K_B \cdot \frac{\rho \cdot v^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K_{B} \cdot \frac{v^{2}}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot q$$

Straight length of equivalent pressure loss (m):

$$L_{eq} = K_B \cdot \frac{d}{f_T}$$

Symbols, Definitions, SI Units:

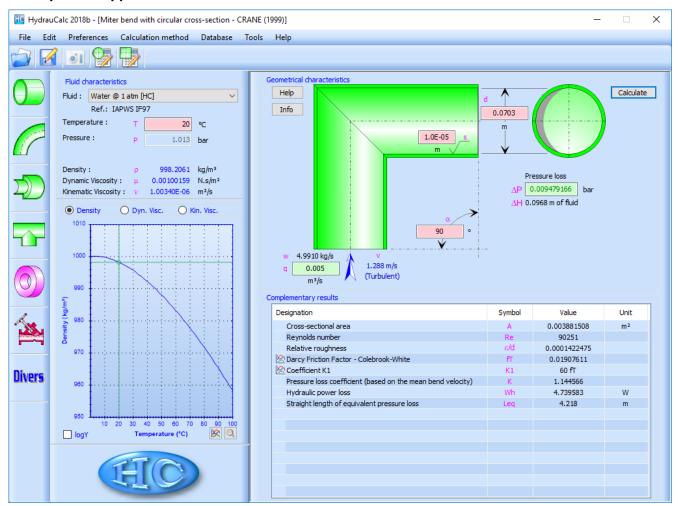
- d Pipe internal diameter (m)
- A Cross-section area (m²)
- q Volume flow rate (m^3/s)
- v Mean velocity (m/s)
- w Mass flow rate (kg/s)
- Re Reynolds number ()
- ϵ Absolute roughness of walls (m)
- f_T Darcy friction factor

Angle of bend (°) α Resistance coefficient for a miter bend () K K_B Total pressure loss coefficient (based on mean velocity in bend) () ΛP Total pressure loss (Pa) ΔH Total head loss of fluid (m) Wh Hydraulic power loss (W) Straight length of equivalent pressure loss (m) Leg Fluid density (kg/m³) ρ

Validity range:

ν

q


- turbulent flow regime (Re $\geq 10^4$)
- stabilized flow upstream of the bend

Fluid kinematic viscosity (m²/s)

Gravitational acceleration (m/s²)

• angle between 0° and 90°

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc © François Corre 2018 Edition: November 2018