

Smooth Bend Circular Cross-Section (CRANE)

Model description:

This model of component calculates the head loss (pressure drop) of a bend smoothly curved whose cross-section is circular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the bend.

Model formulation:

$$\mathsf{A} = \pi \cdot \frac{d^2}{4}$$

Mean velocity (m/s):

$$v = \frac{q}{A}$$

Length measured along the axis (m):

$$\mathsf{L} = 2 \cdot \pi \cdot r \cdot \frac{\alpha}{360}$$

Mass flow rate (kg/s):

$$W = q \cdot \rho$$

Fluid volume (m³):

$$\mathsf{V}=\mathsf{A}\cdot\mathsf{L}$$

Fluid mass (kg):

$$\mathsf{M} = \mathsf{Vol} \cdot \rho_{\mathsf{m}}$$

Reynolds number:

$$\mathsf{Re} = \frac{\mathbf{v} \cdot \mathbf{d}}{\mathbf{v}}$$

Darcy friction factor:

Resistance coefficient for one 90° smooth bend:

$\boldsymbol{K} = f\left(\frac{\boldsymbol{r}}{\boldsymbol{d}}, \boldsymbol{f}_{\boldsymbol{\tau}}\right)$	
--	--

([1] Appendix A-29)

r/d	К	K/f⊤
1	20 f _T	20
1.5	14 f _⊤	14
2	12 f _T	12
3	12 f _T	12
4	14 f _⊤	14
6	17 f _T	17
8	24 f _T	24
10	30 f _T	30
12	34 f _⊤	34
14	38 f _T	38
16	42 f _T	42
20	50 f _T	50

Correction coefficient for angle lower than 90°:

Total pressure loss coefficient (based on mean velocity in bend):

• $\alpha \ge 90^{\circ}$

$$\mathcal{K}_{B} = \left(\frac{\alpha}{90} - 1\right) \left(0.25 \cdot \pi \cdot f_{T} \cdot \frac{r}{d} + 0.5 \cdot K\right) + K$$

([1] Appendix A-29)

Total pressure loss (Pa):

$$\Delta P = K_B \cdot \frac{\rho \cdot v^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K_{\rm B} \cdot \frac{v^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot q$

Straight length of equivalent pressure loss (m):

$$L_{eq} = K_B \cdot rac{d}{f_T}$$

Symbols, Definitions, SI Units:

d	Pipe internal diameter (m)
A	Cross-section area (m²)
q	Volume flow rate (m³/s)
v	Mean velocity (m/s)
L	Length measured along the axis (m)
r	Radius of curvature (m)
α	Curvature angle (°)
w	Mass flow rate (kg/s)
V	Fluid volume (m ³)
Μ	Fluid mass (kg)
Re	Reynolds number ()
fт	Darcy friction factor
3	Absolute roughness of walls (m)
К	Resistance coefficient for one 90° smooth bend ()
K _{corr}	Correction coefficient for angle lower than 90° ()
K _Β	Total pressure loss coefficient (based on mean velocity in bend) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
Leq	Straight length of equivalent pressure loss (m)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s^2)

Validity range:

- turbulent flow regime (Re $\geq 10^4)$
- stabilized flow upstream of the bend
- curvature angle between 0° and 180°
- relative radius of curvature (r/d) range between 1 and 20 for relative radii 'r/d' between 0.5 and 1 or those greater than 20, the coefficient 'K' is linearly extrapolated.

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

[2] George R. Keller, Hydraulic System Analysis, Published by the Editors of Hydraulics & Pneumatics Magazine, 1970

HydrauCalc © François Corre 2018 Edition: November 2018