Square-Edged Orifice Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a square-edged orifice.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Diameter ratio:

$$
\beta=\frac{D_{1}}{D_{2}}
$$

Orifice cross-sectional area $\left(m^{2}\right)$:
$\mathrm{A}_{1}=\pi \cdot \frac{D_{1}^{2}}{4}$

Pipe cross-sectional area $\left(m^{2}\right)$:
$\mathrm{A}_{2}=\pi \cdot \frac{D_{2}{ }^{2}}{4}$

Mean velocity in orifice (m / s):

$$
v_{1}=\frac{q}{A_{1}}
$$

Mean velocity in pipe (m / s):

$$
v_{2}=\frac{q}{A_{2}}
$$

Mass flow rate (kg / s):
$w=q \cdot \rho$

Reynolds number in orifice:

$$
\operatorname{Re}_{1}=\frac{v_{1} \cdot D_{1}}{v}
$$

Reynolds number in pipe:

$$
\operatorname{Re}_{2}=\frac{v_{2} \cdot D_{2}}{v}
$$

Flow coefficient:
$C=f\left(\operatorname{Re}_{2}, \frac{d_{1}}{d_{2}}\right)$
([1] appendix A-20)
$3 \leq \operatorname{Re} \mathrm{e}_{2} \leq 10^{4}$

- $R e_{2}>10^{4}$

Resistance coefficient of orifice:

$$
K_{o}=\frac{1-\beta^{2}}{C^{2} \cdot \beta^{4}}
$$

([1] appendix A-20)
Total pressure loss coefficient (based on mean velocity in pipe):

$$
K=K_{0}
$$

Total pressure loss (Pa):

$$
\Delta P=K \cdot \frac{\rho \cdot v_{2}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=K \cdot \frac{v_{2}{ }^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:

$D_{1} \quad$ Orifice diameter (m)
$D_{2} \quad$ Pipe diameter (m)
$\beta \quad$ Diameter ratio ()
$A_{1} \quad$ Orifice cross-sectional area (m^{2})
$A_{2} \quad$ Pipe cross-sectional area $\left(m^{2}\right)$
$q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$w \quad$ Mass flow rate (kg / s)

v_{1}	Mean velocity in orifice $(\mathrm{m} / \mathrm{s})$
v_{2}	Mean velocity in pipe $(\mathrm{m} / \mathrm{s})$
Re_{1}	Reynolds number in orifice ()
Re_{2}	Reynolds number in pipe ()
C	Flow coefficient ()
K_{0}	Resistance coefficient of orifice ()
K	Total pressure loss coefficient (based on mean velocity in pipe) ()
$\Delta \mathrm{P}$	Total pressure loss (Pa)
$\Delta \mathrm{H}$	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	
v	Fluid density (kg/m $\left.{ }^{3}\right)$
v	Fluid kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the orifice
note: 1) for Reynolds number " Re_{2} " between 3 and 10^{4}, and diameter ratio " D_{1} / D_{2} " lower than 0.2 or greater than 0.8 , the flow coefficient " C " is extrapolated

2) for Reynolds number "Rez" between 10^{4} and 2.10^{6}, and diameter ratio " D_{1} / D_{2} " lower than 0.2 or greater than 0.75 , the flow coefficient " C " is extrapolated

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 Edition 1999

HydrauCalc
Edition: February 2018
© François Corre 2018

