
www.hydraucalc.com

Square-Edged Orifice Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a square-edged orifice.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Diameter ratio:

$$\beta = \frac{D_1}{D_2}$$

Orifice cross-sectional area (m2):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Pipe cross-sectional area (m^2) :

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity in orifice (m/s):

$$v_1 = \frac{q}{A_1}$$

Mean velocity in pipe (m/s):

$$V_2 = \frac{q}{A_2}$$

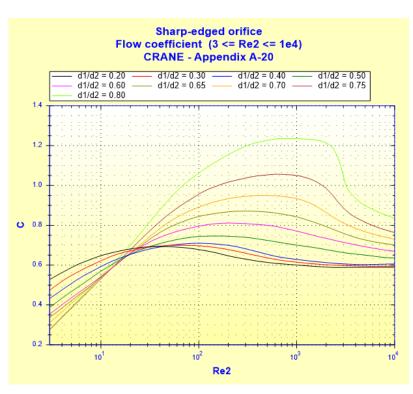
Mass flow rate (kg/s):

$$W = q \cdot \rho$$

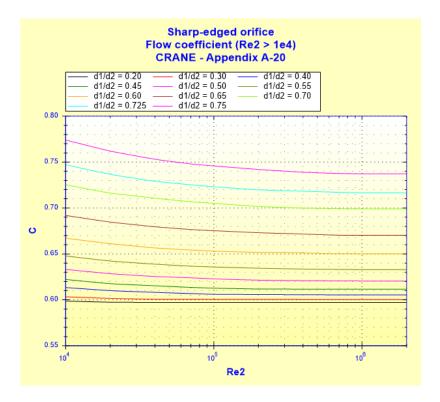
Reynolds number in orifice:

$$\mathsf{Re}_1 = \frac{v_1 \cdot D_1}{v}$$

Reynolds number in pipe:


$$\mathsf{Re}_2 = \frac{\mathsf{v}_2 \cdot \mathsf{D}_2}{\mathsf{v}}$$

Flow coefficient:


$$C = f\left(\text{Re}_2, \frac{d_1}{d_2}\right)$$

([1] appendix A-20)

 $\blacksquare \ 3 \leq Re_2 \leq 10^4$

 \blacksquare Re₂ > 10^4

Resistance coefficient of orifice:

$$K_o = \frac{1 - \beta^2}{C^2 \cdot \beta^4}$$

([1] appendix A-20)

Total pressure loss coefficient (based on mean velocity in pipe):

$$K = K_0$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot v_2^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{{v_2}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

D₁ Orifice diameter (m)

D₂ Pipe diameter (m)

 β Diameter ratio ()

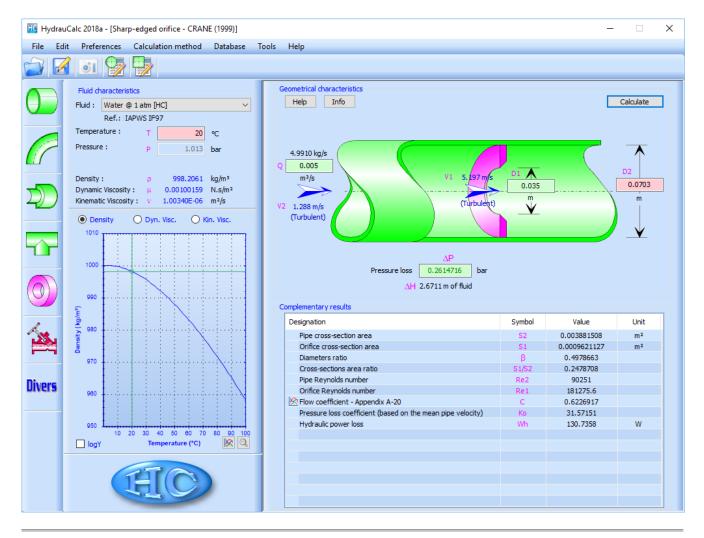
 A_1 Orifice cross-sectional area (m²)

 A_2 Pipe cross-sectional area (m²)

q Volume flow rate (m^3/s)

w Mass flow rate (kg/s)

Mean velocity in orifice (m/s) **V**1 Mean velocity in pipe (m/s) **V**2 Reynolds number in orifice () Re_1 Reynolds number in pipe () Re2 C Flow coefficient () Κo Resistance coefficient of orifice () K Total pressure loss coefficient (based on mean velocity in pipe) () $\Delta \mathsf{P}$ Total pressure loss (Pa) Total head loss of fluid (m) ΔH Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) 9


Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the orifice

note: 1) for Reynolds number "Re2" between 3 and 10^4 , and diameter ratio "D1/D2" lower than 0.2 or greater than 0.8, the flow coefficient "C" is extrapolated

2) for Reynolds number "Re2" between 10^4 and 2.10^6 , and diameter ratio "D₁/D₂" lower than 0.2 or greater than 0.75, the flow coefficient "C" is extrapolated

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc Edition: February 2018

© François Corre 2018