
www.hydraucalc.com

Sharp-edged Orifice Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sharp-edged orifice.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Pipe cross-sectional area (m²):

$$A_1 = \pi \cdot \frac{D^2}{4}$$

Orifice cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{d^2}{4}$$

Mean velocity in pipe (m/s):

$$U = \frac{Q}{A_1}$$

Mean velocity in orifice (m/s):

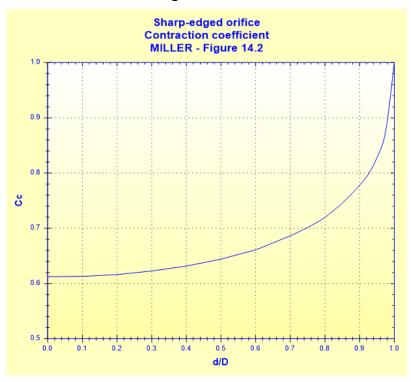
$$u = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in pipe:

$$Re_1 = \frac{U \cdot D}{v}$$


Reynolds number in orifice:

$$Re_2 = \frac{u \cdot d}{v}$$

Contraction coefficient:

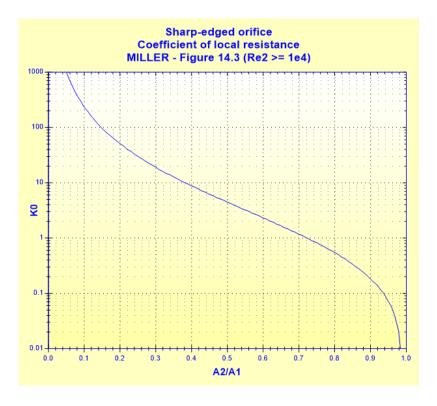
$$C_C = f\left(\frac{d}{D}\right)$$

([1] figure 14.2)

Vena contracta cross-sectional area (m²):

$$A_{c} = d \cdot \left(\frac{d}{D}\right)^{2} \cdot C_{c}$$

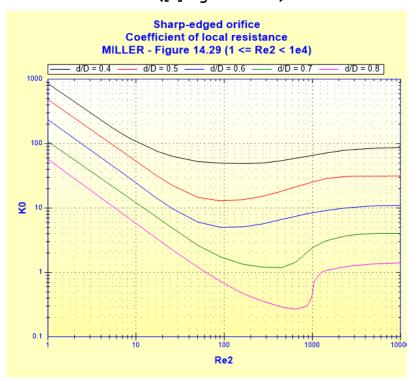
Mean velocity in vena contracta (m/s):


$$U_{c} = \frac{Q}{A_{c}}$$

Local resistance Coefficient:

■ Re₂ \geq 10⁴

$$K_0 = f\left(\frac{A_2}{A_1}\right)$$


([1] figure 14.3)

■ $Re_2 < 10^4$

$$K_0 = f\left(\text{Re}_2, \frac{d}{D}\right)$$

([1] figure 14.29)

Total pressure loss coefficient (based on mean velocity in pipe):

$$K = K_0$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2}$$

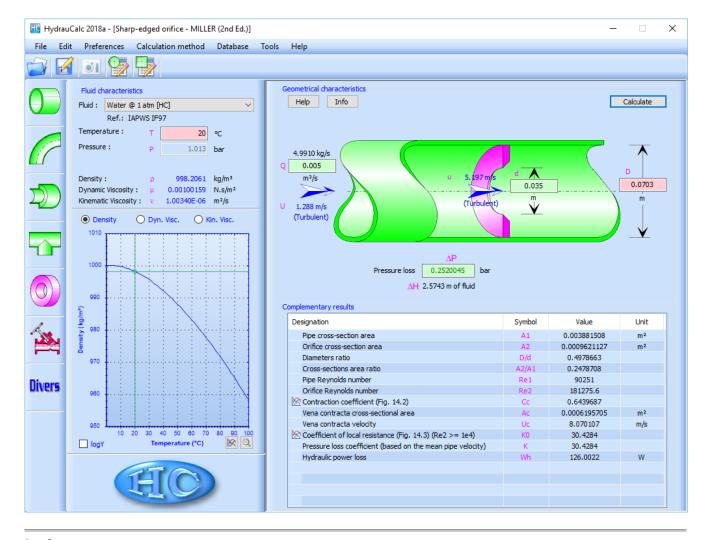
Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:


- D Pipe internal diameter (m)
- d Orifice diameter (m)
- A₁ Pipe cross-sectional area (m²)
- A₂ Orifice cross-sectional area (m²)
- Q Volume flow rate (m³/s)
- G Mass flow rate (kg/s)
- U Mean velocity in pipe (m/s)
- u Mean velocity in orifice (m/s)
- Re₁ Reynolds number in pipe ()
- Re₂ Reynolds number in orifice ()
- C_c Contraction coefficient ()
- A_c Vena contracta cross-sectional area (m²)
- U_c Mean velocity in vena contracta (m/s)
- K₀ Coefficient of local resistance ()
- K Total pressure loss coefficient (based on mean velocity in pipe) ()
- ΔP Total pressure loss (Pa)
- ΔH Total head loss of fluid (m)
- Wh Hydraulic power loss (W)
- ρ Fluid density (kg/m³)
- v Fluid kinematic viscosity (m²/s)
- g Gravitational acceleration (m/s^2)

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the orifice

note: 1) for diameters ratios "d/D" lower than 0.4 or greater than 0.8 and when the Reynolds number in the orifice " Re_2 " is lower than 10^4 , the local resistance coefficient " K_0 " is extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc Edition: February 2018

© François Corre 2018