
www.hydraucalc.com

Sharp-edged Orifice Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sharp-edged orifice installed in a straight pipe.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$D_h = D_0$$

Pipe cross-section area (m²):

$$F_1 = \pi \cdot \frac{{D_1}^2}{4}$$

Orifice cross-section area (m2):

$$F_0 = \pi \cdot \frac{D_0^2}{4}$$

Mean velocity in pipe (m/s):

$$w_1 = \frac{Q}{F_1}$$

Mean velocity in orifice (m/s):

$$w_0 = \frac{Q}{F_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in pipe:

$$Re_1 = \frac{W_1 \cdot D_1}{V}$$

Reynolds number in orifice:


$$\mathsf{Re}_0 = \frac{w_0 \cdot D_0}{v}$$

Pressure loss coefficient (based on the mean pipe velocity):

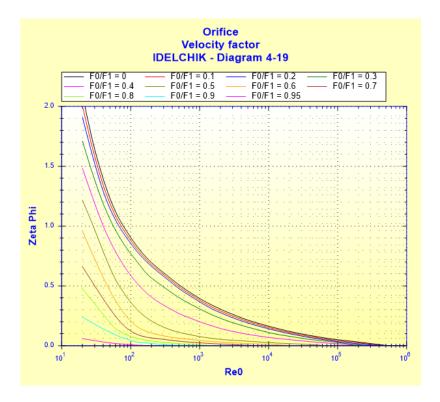
 \blacksquare Re₀ \geq 10⁵

$$\zeta_{1} = \left[\left(1 - \frac{F_{0}}{F_{1}} \right) + 0.707 \cdot \left(1 - \frac{F_{0}}{F_{1}} \right)^{0.375} \right]^{2} \cdot \left(\frac{F_{1}}{F_{0}} \right)^{2}$$

([1] diagram 4.14)

■ $Re_0 \le 10^5$

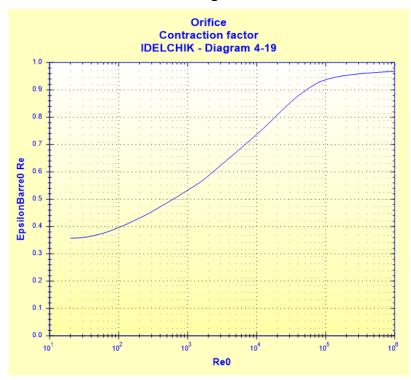
Quadratic pressure loss coefficient:


$$\zeta_{1quad} = \left[\left(1 - \frac{F_0}{F_1} \right) + 0.707 \cdot \left(1 - \frac{F_0}{F_1} \right)^{0.375} \right]^2 \cdot \left(\frac{F_1}{F_0} \right)^2$$

([1] diagram 4.14)

Velocity factor:

$$\zeta_{\varphi} = f\left(\operatorname{Re}_{0}, \frac{F_{0}}{F_{1}}\right)$$


([1] diagram 4.19)

Contraction factor:

$$\overline{\varepsilon}_{0Re} = f(Re_0)$$

([1] diagram 4.19)

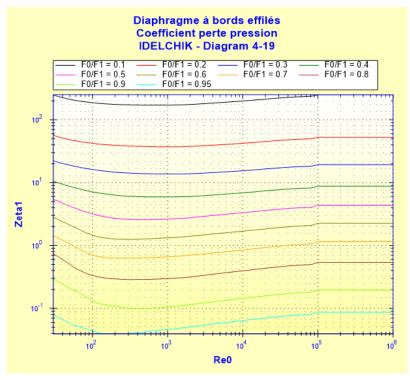
Pressure loss coefficient (based on the mean pipe velocity):

• $30 < Re_0 < 10^5$

$$\zeta_1 = \zeta_{\varphi} \cdot \left(\frac{F_1}{F_0}\right)^2 + \overline{\varepsilon}_{0Re} \cdot \zeta_{1quad}$$

([1] diagram 4.19)

• $10 < Re_0 \le 30$


$$\zeta_1 = \frac{33}{\text{Re}_0} \cdot \left(\frac{F_1}{F_0}\right)^2 + \overline{\varepsilon}_{0\text{Re}} \cdot \zeta_{1\text{quad}}$$

([1] diagram 4.19)

Re₀ ≤ 10

$$\zeta_1 = \frac{33}{\text{Re}_0} \cdot \left(\frac{F_1}{F_0}\right)^2$$

([1] diagram 4.19)

([1] diagramme 4.19)

Total pressure loss (Pa):

$$\Delta P = \zeta_1 \cdot \frac{\rho \cdot w_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = \zeta_1 \cdot \frac{{w_1}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

D_h Hydraulic diameter (m)

D₁ Pipe internal diameter (m)

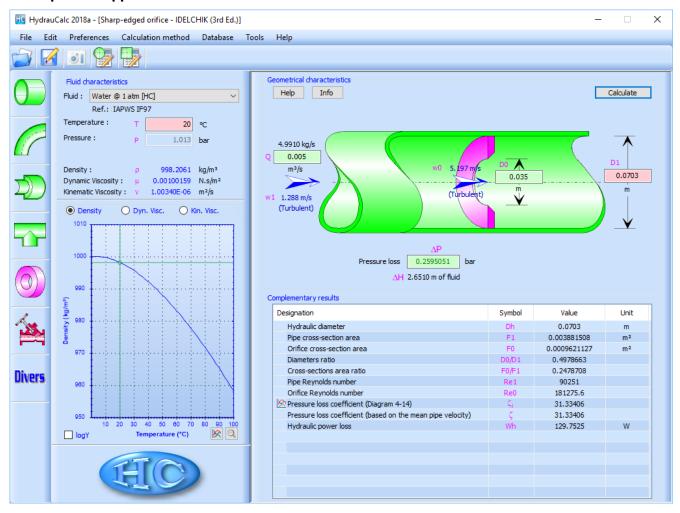
 F_1 Pipe cross-sectional area (m²)

Do Orifice diameter (m)

 F_0 Orifice cross-sectional area (m²)

Q Volume flow rate (m^3/s)

G Mass flow rate (kg/s)


 w_1 Mean velocity in pipe (m/s)

Mean velocity in orifice (m/s) \mathbf{w}_0 Orifice thickness (m) Re₁ Reynolds number in pipe () Reynolds number in orifice () Ren Quadratic pressure loss coefficient determined as $Re = 10^5$ () ζ_{1} quad Velocity factor () ζ_{φ} Contraction factor () $\epsilon_{0} \text{Re}$ Pressure loss coefficient (based on the mean pipe velocity) () ζ_1 ΔP Total pressure loss (Pa) Total head loss of fluid (m) ΛН Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²) q

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the orifice
- thickness to orifice diameter ratio (I/D_0) lower than or equal to 0.015

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc Edition: February 2018

© François Corre 2018