
www.hydraucalc.com

Sudden Contraction Sharp Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction sharp.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{d_2}{d_1}$$

Major cross-sectional area (m²):

$$A_1 = \pi \cdot \frac{d_1^2}{4}$$

Minor cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{d_2^2}{4}$$

Mean velocity in major diameter (m/s):

$$V_1 = \frac{Q}{A_1}$$

Mean velocity in minor diameter (m/s):

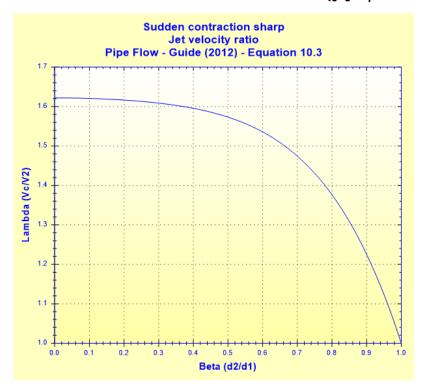
$$V_2 = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in major diameter:

$$N_{\text{Re}_1} = \frac{V_1 \cdot d_1}{v}$$

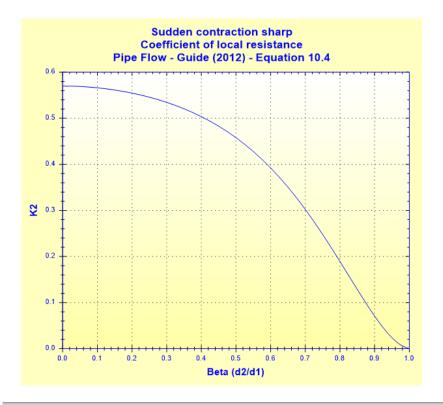

Reynolds number in minor diameter:

$$N_{\text{Re}_2} = \frac{V_2 \cdot d_2}{v}$$

Jet velocity ratio:

$$\lambda = 1 + 0.622 \cdot (1 - 0.215 \beta^2 - 0.785 \beta^5)$$

([1] equation 10.3)


Velocity in vena contracta:

$$V_c = V_2 \cdot \lambda$$

Local resistance coefficient (NRe₂ \geq 10⁴):

$$K_2 = 0.0696 \cdot \left(1 - \beta^5\right) \cdot \lambda^2 + (\lambda - 1)^2$$

([1] equation 10.4)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$K = K_2$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V_2^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{{v_2}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

 d_1 Major diameter (m)

d₂ Minor diameter (m)

 β Ratio of small to large diameter ()

 A_1 Major cross-sectional area (m^2)

A2 Minor cross-sectional area (m²)

Q Volume flow rate (m³/s)

G Mass flow rate (kg/s)

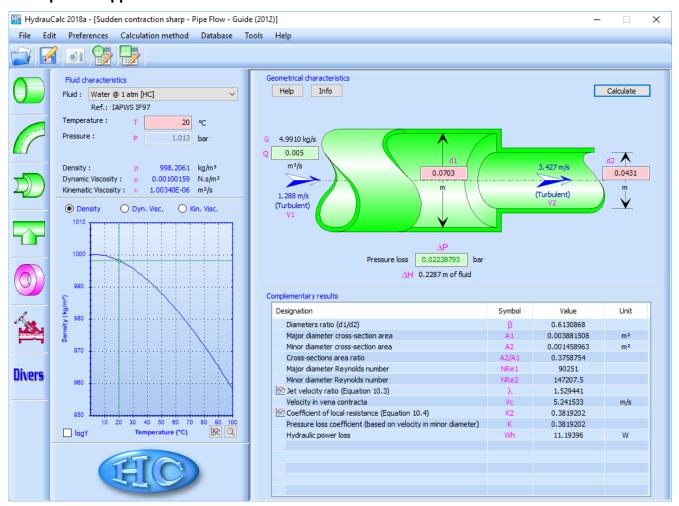
 V_1 Mean velocity in major diameter (m/s)

 V_2 Mean velocity in minor diameter (m/s)

 NRe_1 Reynolds number in major diameter ()

NRe₂ Reynolds number in minor diameter ()

 V_c Mean velocity in vena contracta (m/s)


λ Jet velocity ratio () Local resistance coefficient () K_2 Total pressure loss coefficient (based on mean velocity in minor diameter) () ΔP Total pressure loss (Pa) Total head loss of fluid (m) ΔH Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ_{m} Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²)

Validity range:

q

turbulent flow regime in minor diameter (NRe₂ \geq 10⁴)

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc Edition: February 2018