

Sudden Contraction Sharp Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction sharp.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{D_1}{D_2}$$

Minor cross-sectional area (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Major cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity in minor diameter (m/s):

$$V_1 = \frac{q}{A_1}$$

Mean velocity in major diameter (m/s):

$$V_2 = \frac{q}{A_2}$$

Mass flow rate (kg/s):

$$G = q \cdot \rho$$

Reynolds number in minor diameter:

$$\mathsf{Re}_1 = \frac{v_1 \cdot D_1}{v}$$

Reynolds number in major diameter:

$$\mathsf{Re}_2 = \frac{\mathsf{v}_2 \cdot \mathsf{D}_2}{\mathsf{v}}$$

Local resistance coefficient (Re₁ \geq 10⁴):

$$K_1 = 0.5 \cdot \left(1 - \beta^2\right)$$

([1] equation 2-10.1)

or

$$K_1 = 0.5 \sqrt{\sin\left(\frac{\theta}{2}\right)} \left(1 - \beta^2\right)$$

([1] equation 3-18.1 with θ =180°)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$K = K_1$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot V_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{{v_1}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

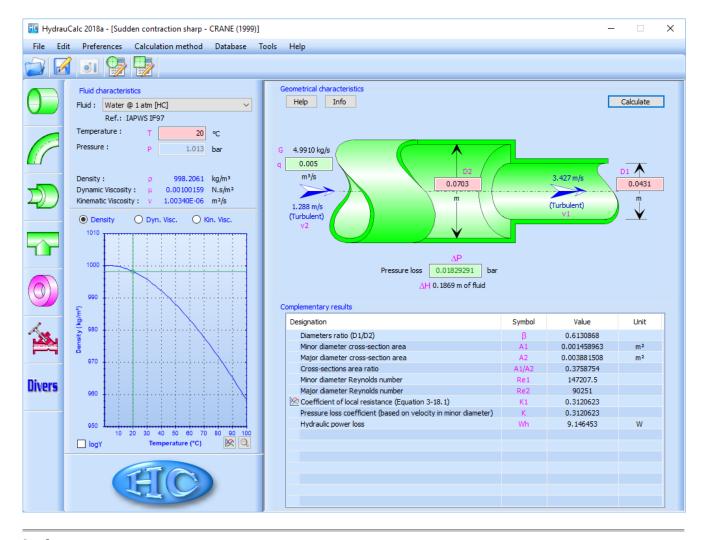
 D_1

Symbols, Definitions, SI Units:

Minor diameter (m)

- D_2 Major diameter (m) Ratio of small to large diameter () ß Minor cross-sectional area (m²) A_1 Major cross-sectional area (m²) A_2 Volume flow rate (m³/s) q G Mass flow rate (kg/s) **V**1 Mean velocity in minor diameter (m/s) Mean velocity in major diameter (m/s) **V**2 Re_1 Reynolds number in minor diameter () Reynolds number in major diameter () Re2 K_1 Local resistance coefficient () Κ Total pressure loss coefficient (based on mean velocity in minor diameter) () ΔP Total pressure loss (Pa) ΔH Total head loss of fluid (m)
- ρ Fluid density (kg/m³)
- v Fluid kinematic viscosity (m^2/s)

Hydraulic power loss (W)


g Gravitational acceleration (m/s²)

Validity range:

Wh

• turbulent flow regime in minor diameter (Re₁ \geq 10⁴)

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc Edition: February 2018

© François Corre 2018