

Sudden Contraction Sharp Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction sharp.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Minor cross-sectional area (m²):

$$\mathsf{F}_{0} = \pi \cdot \frac{{D_{0}}^{2}}{4}$$

Major cross-sectional area (m²):

$$\mathsf{F}_1 = \pi \cdot \frac{{D_1}^2}{4}$$

Mean velocity in minor diameter (m/s):

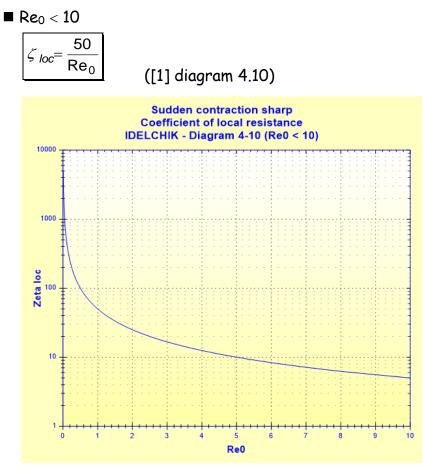
$$W_0 = \frac{Q}{F_0}$$

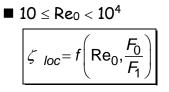
Mean velocity in major diameter (m/s):

$$W_1 = \frac{Q}{F_1}$$

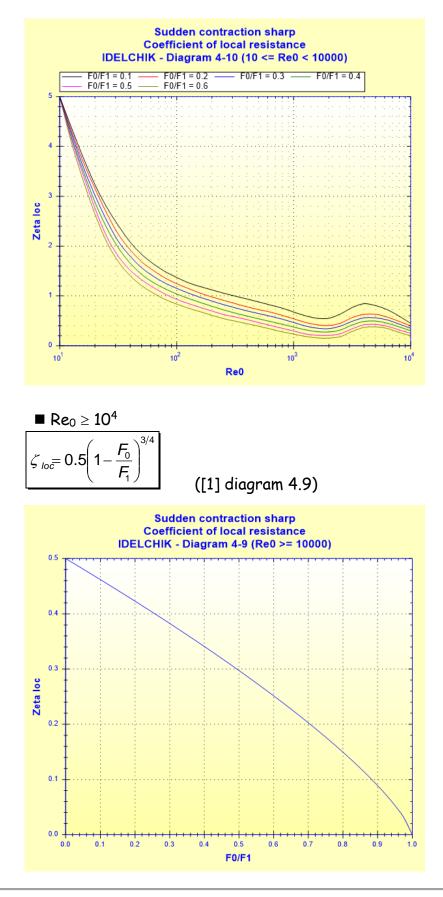
Mass flow rate (kg/s):

$$G = Q \cdot \rho$$


Reynolds number in minor diameter:


$$\mathsf{Re}_{0} = \frac{W_{0} \cdot D_{0}}{V}$$

Reynolds number in major diameter:


$$\mathsf{Re}_1 = \frac{W_1 \cdot D_1}{v}$$

Local resistance coefficient:

([1] diagram 4.10)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$\zeta = \zeta_{loc}$$

Total pressure loss (Pa):

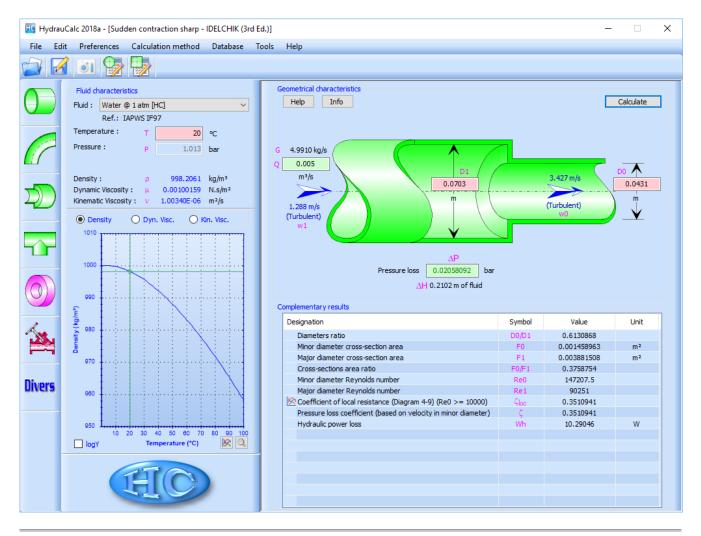
$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{W_0^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$


Symbols, Definitions, SI Units:

Do	Minor diameter (m)
D1	Major diameter (m)
Fo	Minor cross-sectional area (m²)
F1	Major cross-sectional area (m²)
Q	Volume flow rate (m³/s)
G	Mass flow rate (kg/s)
Wo	Mean velocity in minor diameter (m/s)
W 1	Mean velocity in major diameter (m/s)
Re ₀	Reynolds number in minor diameter ()
Re1	Reynolds number in major diameter ()
ζloc	Local resistance coefficient ()
ζ	Total pressure loss coefficient (based on mean velocity in minor
	diameter) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- any flow regime: laminar and turbulent
 - note: for Reynolds number " Re_0 " between 10 and 10^4 , and area ratio " F_0/F_1 " lower than 0.1 or greater than 0.6, the local pressure loss coefficient is extrapolated

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc © François Corre 2018 Edition: February 2018