

Sudden Expansion Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden expansion.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{D_1}{D_2}$$

Minor cross-sectional area (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Major cross-sectional area (m²):

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity in minor diameter (m/s):

$$V_1 = \frac{q}{A_1}$$

Mean velocity in major diameter (m/s):

$$V_2 = \frac{q}{A_2}$$

Mass flow rate (kg/s):

$$G = q \cdot \rho$$

Reynolds number in minor diameter:

$$\mathsf{Re}_1 = \frac{\mathsf{v}_1 \cdot \mathsf{D}_1}{\mathsf{v}}$$

Reynolds number in major diameter:

$$\mathsf{Re}_2 = \frac{\mathsf{v}_2 \cdot \mathsf{D}_2}{\mathsf{v}}$$

Local resistance coefficient ($Re_1 \ge 10^4$):

$$\boldsymbol{K}_{1} = \left(1 - \beta^{2}\right)^{2}$$

([1] equation 3-17.1 with θ =180° or equation 2-9.1)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$K = K_1$$

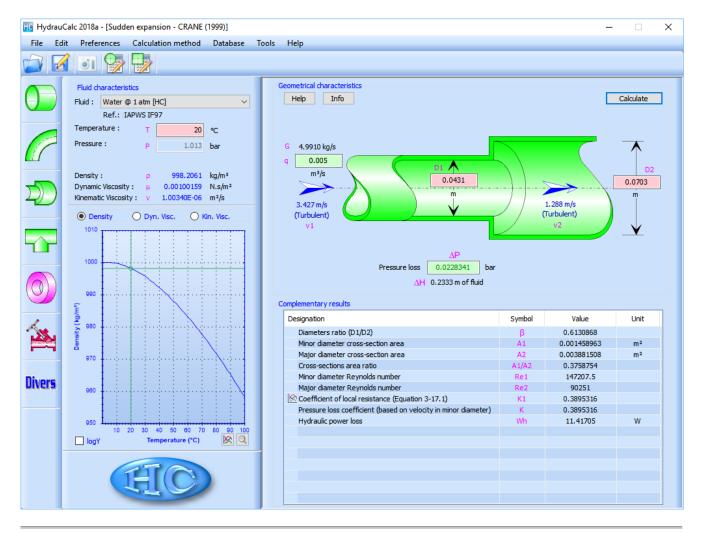
Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot V_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{V_1^2}{2 \cdot g}$$

Hydraulic power loss (W):


$$Wh = \Delta P \cdot q$$

Symbols, De	efinitions, SI Units:
D_1	Minor diameter (m)
D2	Major diameter (m)
β	Ratio of small to large diameter ()
A_1	Minor cross-sectional area (m²)
A ₂	Major cross-sectional area (m²)
q	Volume flow rate (m³/s)
G	Mass flow rate (kg/s)
V 1	Mean velocity in minor diameter (m/s)
V 2	Mean velocity in major diameter (m/s)
Re1	Reynolds number in minor diameter ()
Re ₂	Reynolds number in major diameter ()
K1	Local resistance coefficient ()
K	Total pressure loss coefficient (based on mean velocity in minor
	diameter) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
g	Gravitational acceleration (m/s^2)

Validity range:

• turbulent flow regime in minor diameter ($Re_1 \ge 10^4$)

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc © François Corre 2018 Edition: February 2018