

Sudden Expansion Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden expansion.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Minor cross-sectional area (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Major cross-sectional area (m²):

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity in minor diameter (m/s):

$$U_1 = \frac{Q}{A_1}$$

Mean velocity in major diameter (m/s):

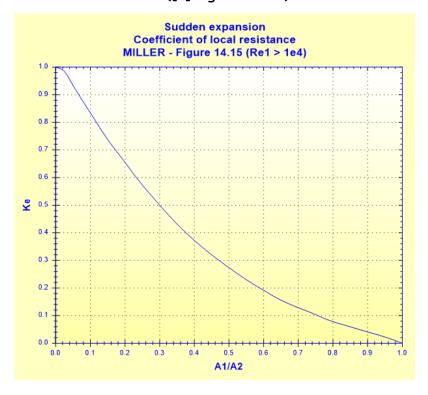
$$U_2 = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in minor diameter:

$$Re_1 = \frac{U_1 \cdot D_1}{v}$$


Reynolds number in major diameter:

$$Re_2 = \frac{U_2 \cdot D_2}{v}$$

Local resistance coefficient:

■ $Re_1 \ge 10^4$

$$K_e = f(A_1/A_2)$$
 ([1] figure 14.15)

■ $Re_1 < 10^4$

$$K_{lam} = f(K_{turb}, Re_1)$$

([1] figure 14.31)

where

 K_{turb} is the local resistance coefficient in turbulent regime (K_e for $Re_1 = 10^4$ - figure 14.15)

Reynolds Number Correction ($Re_1 < 10^4$):

$$C_{\text{Re}} = \frac{K_{lam}}{K_{turb}}$$

Total pressure loss coefficient (based on mean velocity in minor diameter):

■ turbulent flow (Re₁ \geq 10⁴):

$$K = K_e$$

■ laminar flow (Re₁ < 10^4):

$$K = K_{lam}$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{{U_1}^2}{2 \cdot g}$$

Hydraulic power loss (W):

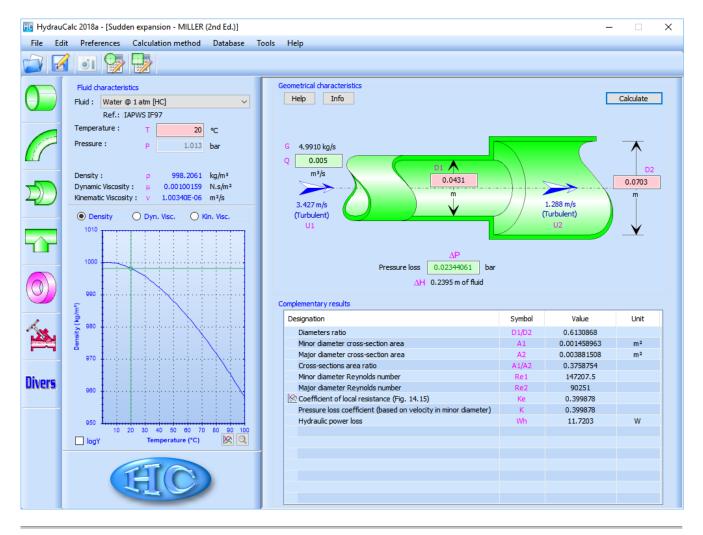
$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

D₁ Minor diameter (m)

D₂ Major diameter (m)

A₁ Minor cross-sectional area (m²)


 A_2 Major cross-sectional area (m²) Volume flow rate (m³/s) Q G Mass flow rate (kg/s) Mean velocity in minor diameter (m/s)U₁ Mean velocity in major diameter (m/s) U₂ Reynolds number in minor diameter () Re₁ Reynolds number in major diameter () Re2 K_e Local resistance coefficient for $Re_1 \ge 10^4$ () Local resistance coefficient for $Re_1 = 10^4$ () K_{turb} Local resistance coefficient for $Re_1 < 10^4$ () Klam Reynolds number correction for $Re_1 < 10^4$ () C_{Re} Κ Total pressure loss coefficient (based on mean velocity in minor diameter) () Total pressure loss (Pa) $\Delta \mathsf{P}$ ΔH Total head loss of fluid (m) Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) g

Validity range:

• any flow regime: laminar and turbulent

note: for Reynolds number " Re_1 " lower than 10^4 , and coefficients " K_{turb} " lower than 0.5 or greater than 10, the laminar pressure loss coefficient " K_{lam} " is extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc Edition: February 2018

© François Corre 2018