

Flush-mounted sharp-edged discharge Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted sharp-edged discharge of piping.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$d_h = d$$

Pipe cross-sectional area (m²):

$$A = \pi \cdot \frac{d^2}{4}$$

Mean velocity in pipe (m/s):

$$V = \frac{Q}{A}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho_m$$

Reynolds number in pipe:

$$N_{\text{Re}} = \frac{V \cdot d}{v}$$

Local resistance coefficient ($N_{Re} \ge 10^4$):

$$K_2 = 1$$
 ([1] §12.1)

Total pressure loss coefficient (based on mean velocity in pipe):

$$K = K_2$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot v^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{v^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

dh Hydraulic diameter (m)

d Pipe diameter (m)

A Pipe cross-sectional area (m²)

Q Volume flow rate (m³/s)

G Mass flow rate (kg/s)

V Mean velocity in pipe (m/s)

N_{Re} Reynolds number in pipe ()

K₂ Local resistance coefficient ()

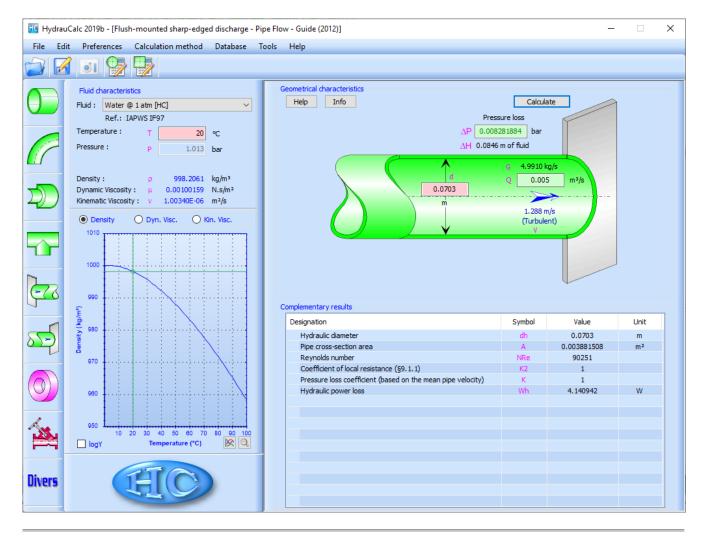
K Total pressure loss coefficient (based on mean velocity in pipe) ()

 ΔP Total pressure loss (Pa)

 ΔH Total head loss of fluid (m)

Wh Hydraulic power loss (W)

 ρ_m Fluid density (kg/m³)


v Fluid kinematic viscosity (m²/s)

g Gravitational acceleration (m/s²)

Validity range:

• turbulent flow regime in pipe $(N_{Re} \ge 10^4)$

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc Edition: June 2019

© François Corre 2019