
www.hydraucalc.com

Flush-mounted rounded entrance Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted rounded entrance of piping.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$D_h = D$$

Pipe cross-sectional area (m^2) :

$$A = \pi \cdot \frac{D^2}{4}$$

Mean velocity in pipe (m/s):

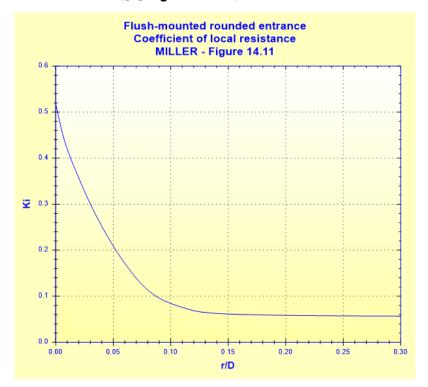
$$U = \frac{Q}{A}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in pipe:

$$Re = \frac{U \cdot D}{v}$$


Local resistance coefficient:

Re ≥ 10⁴

• $r/D \le 0.3$

$$K_i = f\left(\frac{r}{D}\right)$$

([1] figure 14.11)

• r/D > 0.3

$$K_i = 0.567$$

([1] figure 14.12)

■ $Re < 10^4$

$$K_{lam} = f(Re, K_{turb})$$

([1] figure 14.31 with $K_{turb} = K_i$)

$$C_{\text{Re}} = \frac{K_{lam}}{K_{i}}$$

Total pressure loss coefficient (based on mean velocity in pipe):

■ turbulent flow (Re $\geq 10^4$):

$$K = K_i$$

■ laminar flow (Re $< 10^4$):

$$K = K_{lam}$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

Dh Hydraulic diameter (m)

D Pipe diameter (m)

A Pipe cross-sectional area (m²)

Q Volume flow rate (m³/s)

U Mean velocity in pipe (m/s)

G Mass flow rate (kg/s)

Re Reynolds number in pipe ()

r Radius of the round (m)

 K_i Local resistance coefficient for $Re \ge 10^4$ ()

 K_{lam} Local resistance coefficient for Re < 10^4 ()

 C_{Re} Reynolds number correction for Re < 10^4 ()

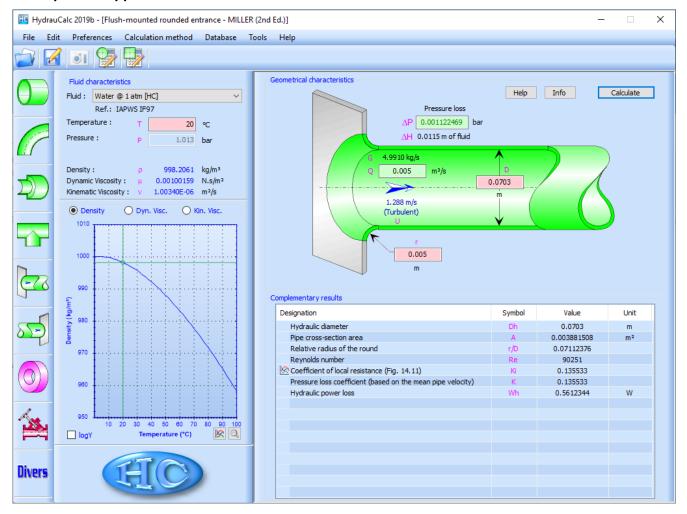
K Total pressure loss coefficient (based on mean velocity in pipe) ()

 ΔP Total pressure loss (Pa)

 ΔH Total head loss of fluid (m)

Wh Hydraulic power loss (W)

 ρ Fluid density (kg/m³)


v Fluid kinematic viscosity (m^2/s)

g Gravitational acceleration (m/s^2)

Validity range:

• any flow regime: laminar and turbulent

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller

HydrauCalc Edition: June 2019

© François Corre 2019