
www.hydraucalc.com

Flush-mounted sharp-edged entrance mounted at a distance Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted sharp-edged entrance of piping mounted at a distance.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$D_h = D_0$$

Pipe cross-sectional area (m^2) :

$$\mathsf{F}_0 = \pi \cdot \frac{{D_0}^2}{4}$$

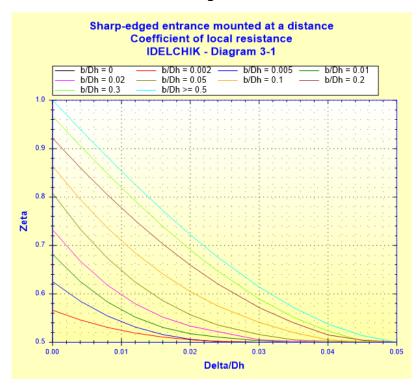
Mean velocity in pipe (m/s):

$$w_0 = \frac{Q}{F_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in pipe:


$$Re = \frac{W_0 \cdot D_0}{v}$$

Local resistance coefficient:

■ $\delta_1/Dh \le 0.05$

$$\zeta_{loc} = f\left(\frac{\delta_1}{D_h}, \frac{b}{D_h}\right)$$

([1] diagram 3.1)

■ $\delta_1/Dh > 0.05$

$$\zeta_{loc} = 0.5$$

([1] diagram 3.1)

Total pressure loss coefficient (based on mean velocity in pipe):

$$\zeta = \zeta_{loc}$$

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot W_0^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{{w_0}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

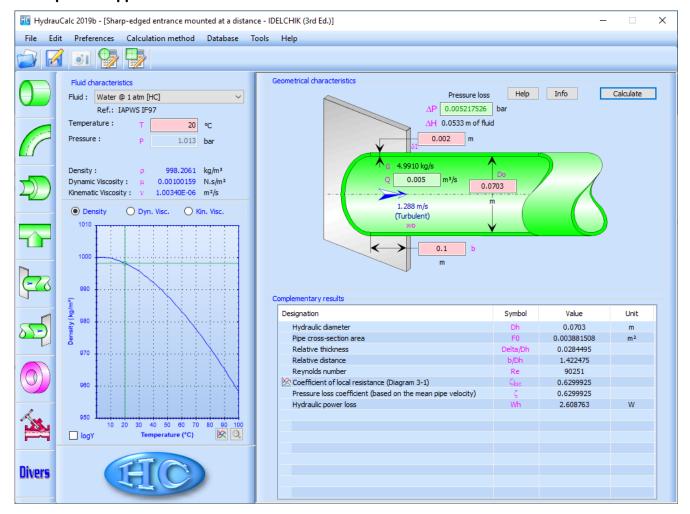
Symbols, Definitions, SI Units:

D_h Hydraulic diameter (m)

Do Pipe diameter (m)

 F_0 Pipe cross-sectional area (m²)

Q Volume flow rate (m^3/s)


 w_0 Mean velocity in pipe (m/s)

G Mass flow rate (kg/s) Reynolds number in pipe () Re b Distance from the wall (m) Pipe thickness (m) δ_1 Local resistance coefficient () ζ_{loc} Total pressure loss coefficient (based on mean velocity in pipe) () ΛP Total pressure loss (Pa) ΛН Total head loss of fluid (m) Wh Hydraulic power loss (W) Fluid density (kg/m³) ρ Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s²) 9

Validity range:

• turbulent flow regime (Re $\geq 10^4$)

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc Edition: June 2019