

Straight Pipe Triangular Cross-Section and Roughness Walls (MILLER)

Model description:

This model of component calculates the major head loss (pressure drop) of a horizontal straight pipe of triangular and constant cross-section.

In addition, the flow is assumed fully developed and stabilized.

The head loss is due to the friction of the fluid on the inner walls of the piping and is calculated with the Darcy formula.

Darcy friction factor is determined:

- for laminar flow regime by the law of Hagen-Poiseuille (independent of the value of relative roughness),
- for turbulent flow regime by the explicit Swamee-Jain equation (dependent of the value of relative roughness), the explicit Swamee-Jain equation is a Colebrook-White equation approximation,
- for critical flow regime by interpolation between friction factors of laminar and turbulent flow.

Model formulation:

Top angle (°):

$$\theta = 2 \cdot \tan^{-1} \left(\frac{w}{2 \cdot h} \right)$$

Hydraulic diameter (m):

$$D = \frac{2 \cdot h}{1 + \sqrt{\frac{1}{\tan^2\left(\frac{\theta}{2}\right)} + 1}}$$

Cross-section area (m²):

$$\mathsf{A} = \frac{W}{2} \cdot h$$

Mean velocity (m/s):

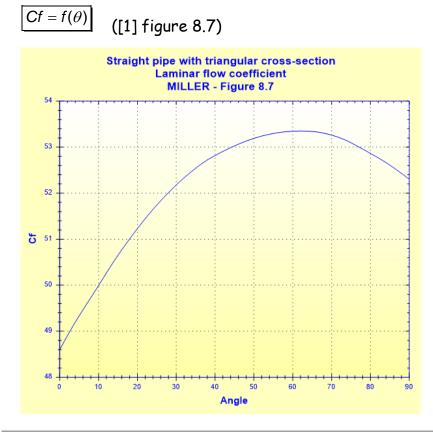
$$U = \frac{\mathsf{Q}}{\mathsf{A}}$$

Mass flow rate (kg/s):

$$m = Q \cdot \rho$$

Fluid volume in the pipe (m³):

$$V = A \cdot L$$

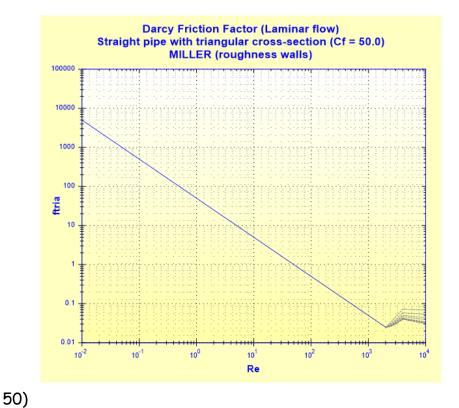

Fluid mass in the pipe (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho$$

Reynolds number:

$$\mathsf{Re} = \frac{U \cdot D}{v}$$

Laminar flow coefficient:


Darcy friction factor:

■ laminar flow regime (Re ≤ 2000):

Darcy friction factor for triangular cross-section:

$$f_{tria} = rac{Cf}{Re}$$

([1] equation 8.7)

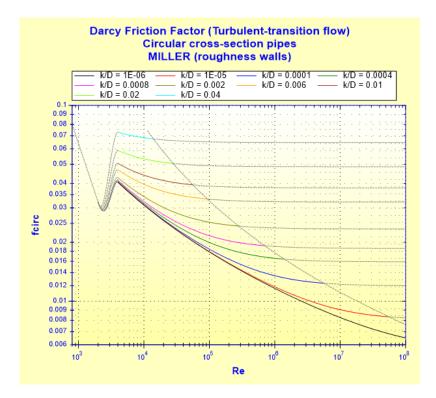
([1] equation 8.7 with Cf =

 \blacksquare turbulent flow regime - transition region and complete turbulence region (Re \ge 4000):

Darcy friction factor for circular cross-section:

Swamee-Jain equation (Colebrook-White equation approximation)

$$f_{circ} = \frac{0.25}{\left[\log\left(\frac{k}{3.7 \cdot D} + \frac{5.74}{\text{Re}^{0.9}}\right)\right]^2}$$


([1] equation 8.4)

Reynolds number corresponding to the beginning of complete turbulence:

$$\mathsf{Re''_{lim}} = \frac{560}{k/D}$$

([2] diagram 2.4)

Transition region

Complete turbulence region Darcy Friction Factor (Turbulent-quadratic flow) **Circular cross-section pipes** MILLER (roughness walls) k/D = 1E-06 k/D = 1E-05 k/D = 0.0001 - k/D = 0.0004 k/D = 0.0008 k/D = 0.002 k/D = 0.04 k/D = 0.006 — k/D = 0.01 _ k/D = 0.020.1 0.09 0.08 0.07 0.06 0.05 0.04 0.035 0.03 fcirc 0.025 0.02 0.018 0.016 0.014 0.012 0.01 0.009 0.008 0.007 0.006 10⁴ 10⁶ 10³ 10⁵ 10 10 Re

Darcy friction factor for triangular cross-section:

$$f_{tria} = f_{circ}$$

■ critical flow regime (2000 < Re < 4000):

Darcy friction factor for circular cross-section: cubic interpolation

$$f_{circ} = (X1 + R \cdot (X2 + R \cdot (X3 + X4)))$$
 ([3])

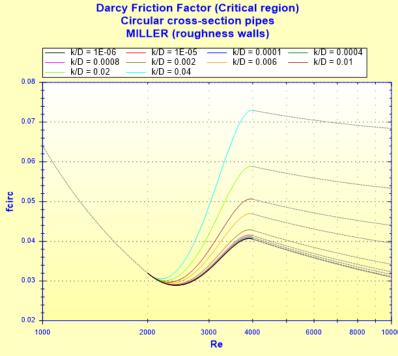
with:

$$R = \frac{Re}{2000}$$

$$X1 = 7 \cdot FA - FB$$

$$X2 = 0.128 - 17 \cdot FA + 2.5 \cdot FB$$

$$X3 = -0.128 + 13 \cdot FA - 2 \cdot FB$$


$$X4 = R \cdot (0.032 - 3 \cdot FA + 0.5 \cdot FB)$$

$$FA = Y3^{-2}$$

$$FB = FA \cdot \left(2 - \frac{0.00514215}{Y2 \cdot Y3}\right)$$

$$Y2 = \frac{k}{3.7 \cdot D} + \frac{5.74}{Re^{0.9}}$$

$$Y3 = -0.86859 \cdot ln\left(\frac{k}{3.7 \cdot D} + \frac{5.74}{4000^{0.9}}\right)$$
Derive Friction Factor (Critical region)

Darcy friction factor for triangular cross-section:

$$f_{tria} = f_{circ}$$

Friction pressure loss coefficient:

$$K_{f} = f_{tria} \cdot \frac{L}{D}$$
 ([1] equation 8.3)

Total pressure loss coefficient (based on the mean pipe velocity):

$$K = K_f$$

Total pressure loss (Pa):

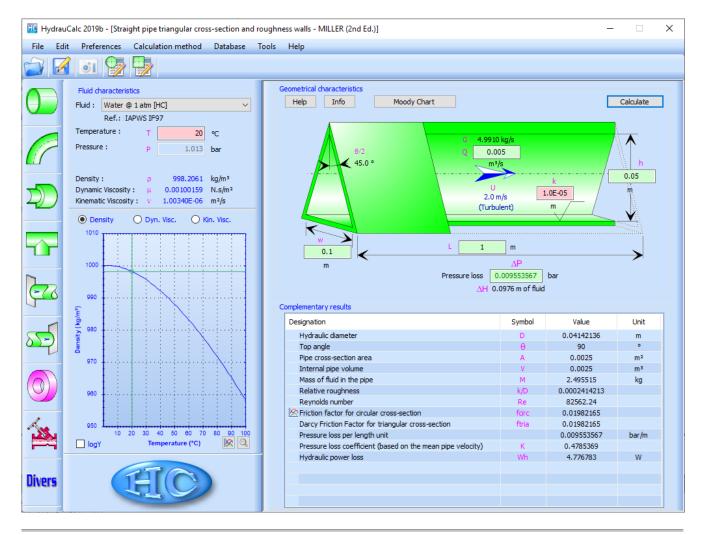
$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2}$$
 ([1] equation 8.1b)

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

([1] equation 8.1a)

Hydraulic power loss (W):


 $Wh = \Delta P \cdot Q$

Symbols, Definitions, SI Units:

w	Cross-section base (m)
h	Cross-section height(m)
θ	Top angle (°)
D	Hydraulic diameter (m)
Α	Cross-section area (m²)
Q	Volume flow rate (m³/s)
U	Mean velocity (m/s)
m	Mass flow rate (kg/s)
L	Pipe length (m)
V	Fluid volume in the pipe (m ³)
Μ	Fluid mass in the pipe (kg)
Re	Reynolds number ()
Cf	Laminar flow coefficient ()
k	Absolute roughness of walls (m)
fcirc	Darcy friction factor for circular cross-section ()
Re"lim	Reynolds number corresponding to the beginning of complete turbulence
	0
f _{tria}	Darcy friction factor for triangular cross-section ()
K _f	Friction pressure loss coefficient ()
Κ	Total pressure loss coefficient (based on the mean pipe velocity) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s²)

Validity range:

- any flow regime: laminar, critical and turbulent (Re $\leq 10^8)$
- relative roughness $k/D \le 0.05$
- stabilized flow

References:

[1] Internal Flow System, Second Edition, D.S. Miller (1990)

[2] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik (2008)

[3] Dunlop (1991)

HydrauCalc © François Corre 2019 Edition: June 2019