Symmetric dividing radiused-edged T-junction Circular Cross-Section
 (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a symmetric dividing radiused-edged T-junction with three legs of equal area.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the three branches $\left(m^{2}\right)$:
$A_{1}=\pi \cdot \frac{d_{1}^{2}}{4}$
$\mathrm{A}_{2}=\pi \cdot \frac{d_{2}{ }^{2}}{4}$
$\mathrm{A}_{3}=\pi \cdot \frac{d_{3}{ }^{2}}{4}$
with $d_{1}=d_{2}=d_{3}=d$

Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$):

$$
Q_{1}=Q_{2}+Q_{3}
$$

Mean velocity in the common branch (m / s):

$$
V_{1}=\frac{Q_{1}}{A_{1}}
$$

Mean velocity in the left branch $(\mathrm{m} / \mathrm{s})$:

Mean velocity in the right branch (m / s):

$$
V_{3}=\frac{Q_{3}}{A_{3}}
$$

Mass flow rate in the common branch (kg / s):

$$
w_{1}=Q_{1} \cdot \rho_{m}
$$

Mass flow rate in the left branch (kg / s):

$$
w_{2}=Q_{2} \cdot \rho_{m}
$$

Mass flow rate in the right branch (kg / s):
$w_{3}=Q_{3} \cdot \rho_{m}$

Reynolds number in the common branch:

$$
N R e_{1}=\frac{V_{1} \cdot d_{1}}{v}
$$

Reynolds number in the left branch:

$$
N \operatorname{Re}_{2}=\frac{V_{2} \cdot d_{2}}{v}
$$

Reynolds number in the right branch:

$$
N \operatorname{Re}_{3}=\frac{V_{3} \cdot d_{3}}{v}
$$

Pressure loss coefficient of the left branch:

$A_{1} Q_{1}$
Coefficient based on mean velocity in the common branch:

$$
\begin{equation*}
K_{12_{1}}=0.59+\left(1.18-1.84 \cdot \sqrt{\frac{r}{d}}+1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{2}}{w_{1}}-\left(0.68-1.04 \cdot \sqrt{\frac{r}{d}}+1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{2}^{2}}{w_{1}^{2}} \tag{1}
\end{equation*}
$$

equation 16.16)

Pipe Flow - Guide (2012) - Equation 16.16

Coefficient based on mean velocity in the left branch:

$$
K_{12_{2}}=0.59 \cdot \frac{w_{1}{ }^{2}}{w_{2}^{2}}+\left(1.18-1.84 \cdot \sqrt{\frac{r}{d}}+1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{1}}{w_{2}}-0.68+1.04 \cdot \sqrt{\frac{r}{d}}-1.16 \cdot \frac{r}{d}
$$

equation 16.17)

> Symmetric dividing radiused-edged T-junction Coefficient of local resistance
> Pipe Flow - Guide (2012) - Equation 16.17

[^0]
$$
A_{1} Q_{1}
$$

Note: for the right branch, the formulas are the same as those of the left branch, with subscript 3 instead of subscript 2.

Coefficient based on mean velocity in the common branch:

$$
\begin{equation*}
K_{13_{1}}=0.59+\left(1.18-1.84 \cdot \sqrt{\frac{r}{d}}+1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{3}}{w_{1}}-\left(0.68-1.04 \cdot \sqrt{\frac{r}{d}}+1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{3}^{2}}{w_{1}^{2}} \tag{1}
\end{equation*}
$$

equation 16.16)

Symmetric dividing radiused-edged T-junction

Coefficient of local resistance
Pipe Flow - Guide (2012) - Equation 16.16

Coefficient based on mean velocity in the left branch:

$$
\begin{equation*}
K_{13_{3}}=0.59 \cdot \frac{w_{1}{ }^{2}}{w_{3}{ }^{2}}+\left(1.18-1.84 \cdot \sqrt{\frac{r}{d}}+1.16 \cdot \frac{r}{d}\right) \cdot \frac{w_{1}}{w_{3}}-0.68+1.04 \cdot \sqrt{\frac{r}{d}}-1.16 \cdot \frac{r}{d} \tag{1}
\end{equation*}
$$

equation 16.17)

Pressure loss in the left branch (Pa):

$$
\Delta P_{12}=K_{12} \cdot \frac{\rho_{m} \cdot w_{1}^{2}}{2}
$$

Pressure loss in the right branch (Pa):

$$
\Delta P_{13}=K_{13_{1}} \cdot \frac{\rho_{m} \cdot w_{1}^{2}}{2}
$$

Head loss of fluid in the left branch (m):

$$
\Delta H_{12}=K_{12_{1}} \cdot \frac{w_{1}^{2}}{2 \cdot g}
$$

Head loss of fluid in the right branch (m):

$$
\Delta H_{13}=K_{13_{1}} \cdot \frac{w_{1}^{2}}{2 \cdot g}
$$

Hydraulic power loss in the left branch (W):

$$
W h_{12}=\Delta P_{12} \cdot Q_{2}
$$

Hydraulic power loss in the right branch (W):

$$
W h_{13}=\Delta P_{13} \cdot Q_{3}
$$

Symbols, Definitions, SI Units:
$d \quad$ Inside diameter of the three branches (m)
$d_{1} \quad$ Diameter of the common branch (m)
$d_{2} \quad$ Diameter of the left branch (m)

d_{3}	Diameter of the right branch
A_{1}	Cross-sectional area of the common branch (m^{2})
A_{2}	Cross-sectional area of the left branch (m^{2})
A_{3}	Cross-sectional area of the right branch (m^{2})
Q1	Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$)
V_{1}	Mean velocity in the common branch (m / s)
Q2	Volume flow rate in the left branch ($\mathrm{m}^{3} / \mathrm{s}$)
V_{2}	Mean velocity in the left branch (m / s)
Q3	Volume flow rate in the right branch ($\mathrm{m}^{3} / \mathrm{s}$)
V_{3}	Mean velocity in the right branch (m / s)
W1	Mass flow rate in the common branch (kg/s)
W_{2}	Mass flow rate in the left branch (kg/s)
W3	Mass flow rate in the right branch (kg/s)
NRe ${ }_{1}$	Reynolds number in the common branch ()
NRe2	Reynolds number in the left branch ()
NRe_{3}	Reynolds number in the right branch ()
r	Rounded radius (m)
K_{121}	Pressure loss coefficient of the left branch (based on mean velocity in the common branch) ()
K_{131}	Pressure loss coefficient of the right branch (based on mean velocity in the common branch) ()
K_{122}	Pressure loss coefficient of the left branch (based on mean velocity in the left branch) ()
K133	Pressure loss coefficient of the right branch (based on mean velocity in the right branch) ()
ΔP_{12}	Pressure loss in the left branch (Pa)
$\Delta \mathrm{P}_{13}$	Pressure loss in the right branch (Pa)
ΔH_{12}	Head loss of fluid in the left branch (m)
ΔH_{13}	Head loss of fluid in the right branch (m)
Wh12	Hydraulic power loss in the left branch (W)
Wh13	Hydraulic power loss in the right branch (W)
ρ_{m}	Fluid density ($\mathrm{kg} / \mathrm{m}^{3}$)
v	Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
9	Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)

Validity range:

- turbulent flow regime $\left(\mathrm{NRe}_{1} \geq 10^{4}\right)$
- three legs of equal area $\left(d_{1}=d_{2}=d_{3}\right)$
- relative radius of the round (r / d) lower than or equal to $0.3 d$
- ratio of mass flow rates (w_{2} / w_{1}) and (w_{3} / w_{1}) between 0.2 and 0.8 note: for mass flow ratios less than 0.2 or greater than 0.8 , pressure loss coefficients are extrapolated

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc

[^0]: Pressure loss coefficient of the right branch:

