Combining radiused-edged T -junction Circular Cross-Section
 (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a combining radiused-edged T -junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the common branch $\left(m^{2}\right)$:
$A_{1}=\pi \cdot \frac{d_{2}^{2}}{4}$

Cross-sectional area of the straight branch (m^{2}):
$A_{2}=\pi \cdot \frac{d_{2}{ }^{2}}{4}$

Cross-sectional area of the side branch (m^{2}):
$\mathrm{A}_{3}=\pi \cdot \frac{d_{3}{ }^{2}}{4}$

Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$):

$$
Q_{1}=Q_{2}+Q_{3}
$$

Mean velocity in the common branch (m / s):

$$
V_{1}=\frac{Q_{1}}{A_{1}}
$$

Mean velocity in the straight branch (m / s):

$$
V_{2}=\frac{Q_{2}}{A_{2}}
$$

Mean velocity in the side branch $(\mathrm{m} / \mathrm{s})$:

$$
V_{3}=\frac{Q_{3}}{A_{3}}
$$

Mass flow rate in the common branch (kg / s):

$$
w_{1}=Q_{1} \cdot \rho_{m}
$$

Mass flow rate in the straight branch (kg/s):
$w_{2}=Q_{2} \cdot \rho_{m}$

Mass flow rate in the side branch (kg / s):
$w_{3}=Q_{3} \cdot \rho_{m}$

Reynolds number in the common branch:

$$
N \operatorname{Re}_{1}=\frac{V_{1} \cdot d_{2}}{v}
$$

Reynolds number in the straight branch:

$$
N \operatorname{Re}_{2}=\frac{V_{2} \cdot d_{2}}{v}
$$

Reynolds number in the side branch:

$$
N \operatorname{Re}_{3}=\frac{V_{3} \cdot d_{3}}{v}
$$

Coefficient C_{M} :

$$
C_{M}=0.23+1.46 \cdot\left(\frac{r}{d_{3}}\right)-2.75 \cdot\left(\frac{r}{d_{3}}\right)^{2}+1.65 \cdot\left(\frac{r}{d_{3}}\right)^{3}
$$

([1] equation 16.23)

Pipe Flow - Guide (2012) - Equation 16.23

Coefficient $C_{x} C$:

$$
C_{x C}=0.08+0.56 \cdot\left(\frac{r}{d_{3}}\right)-1.75 \cdot\left(\frac{r}{d_{3}}\right)^{2}+1.83 \cdot\left(\frac{r}{d_{3}}\right)^{3}
$$

([1] equation 16.24)

Combining radiused-edged T -junction
Coefficient Cxc
Pipe Flow - Guide (2012) - Equation 16.24

Coefficient $C_{y c}$:

$$
C_{y c}=1-0.25 \cdot\left(\frac{d_{3}}{d_{1}}\right)^{1.3}-\left(0.11 \cdot \frac{r}{d_{3}}-0.65 \cdot \frac{r^{2}}{d_{3}{ }^{2}}+0.83 \cdot \frac{r^{3}}{d_{3}{ }^{3}}\right) \cdot \frac{d_{3}{ }^{2}}{d_{1}{ }^{2}}
$$

Pipe Flow - Guide (2012) - Equation § 16.2.2

Pressure loss coefficient of the straight branch:
A_{2}
Q_{2}

A_{1}
Q_{1}

$A_{3} Q_{3}$

Coefficient based on mean velocity in the common branch:

$$
K_{21_{1}}=1-0.95 \cdot \frac{w_{2}^{2}}{w_{1}^{2}}-2 \cdot C_{x C} \cdot\left(\frac{w_{2}}{w_{1}}-\frac{w_{2}^{2}}{w_{1}^{2}}\right)-2 \cdot C_{M} \cdot\left(1-\frac{w_{2}}{w_{1}}\right)
$$

([1] equation 16.22)

Combining radiused-edged T -junction

Coefficient of local resistance
Pipe Flow - Guide (2012) - Equation 16.22

Coefficient based on mean velocity in the straight branch:
$K_{21_{2}}=\frac{w_{1}{ }^{2}}{w_{2}{ }^{2}}-0.95-2 \cdot C_{x C} \cdot\left(\frac{w_{1}}{w_{2}}-1\right)-2 \cdot C_{M} \cdot\left(\frac{w_{1}{ }^{2}}{w_{2}{ }^{2}}-\frac{w_{1}}{w_{2}}\right)$
([1] equation 16.25)
Combining radiused-edged T-junction
Coefficient of local resistance
Pipe Flow - Guide (2012) - Equation 16.25

Pressure loss coefficient of the side branch:

$A_{3} Q_{3}$
Coefficient based on mean velocity in the common branch:

$$
K_{31_{1}}=-0.92+2 \cdot\left(2-C_{x C}-C_{M}\right) \cdot \frac{w_{3}}{w_{1}}+\left[\left(2 \cdot C_{y C}-1\right) \cdot \frac{d_{1}^{4}}{d_{3}^{4}}+2 \cdot\left(C_{x C}-1\right)\right] \cdot \frac{w_{3}^{2}}{w_{1}^{2}}
$$

([1] equation 16.30)

Combining radiused-edged T -junction
Coefficient of local resistance ($\mathrm{r} / \mathrm{d} 3=0.1$)
Pipe Flow - Guide (2012) - Equation 16.30

([1] Equation 16.30 with $\mathrm{r} / \mathrm{d} 3$
$=0.1)$

Combining radiused-edged T -junction Coefficient of local resistance ($\mathrm{w} 3 / \mathrm{w} 1=0.50$)

Pipe Flow - Guide (2012) - Equation 16.30

([1] Equation 16.30 with
$d 3 / d 1=0.5)$

Coefficient based on mean velocity in the straight branch:

$$
K_{31_{3}}=2 \cdot C_{y C}-1+\frac{d_{3}^{4}}{d_{1}^{4}} \cdot\left[2 \cdot\left(C_{x C}-1\right)+2 \cdot\left(2-C_{x C}-C_{M}\right) \cdot \frac{w_{1}}{w_{3}}-0.92 \cdot \frac{w_{1}^{2}}{w_{3}^{2}}\right]
$$

16.31)

Combining radiused-edged T-junction
Coefficient of local resistance ($\mathrm{r} / \mathrm{d} 3=0.1$)
Pipe Flow - Guide (2012) - Equation 16.31

Pressure loss in the straight branch (Pa):

$$
\Delta P_{21}=K_{21} \cdot \frac{\rho_{m} \cdot w_{1}^{2}}{2}
$$

$$
\Delta P_{31}=K_{31_{1}} \cdot \frac{\rho_{m} \cdot W_{1}^{2}}{2}
$$

Head loss of fluid in the straight branch (m):

$$
\Delta H_{21}=K_{21_{1}} \cdot \frac{w_{1}^{2}}{2 \cdot g}
$$

Head loss of fluid in the side branch (m):
$\Delta H_{31}=K_{31_{1}} \cdot \frac{w_{1}^{2}}{2 \cdot g}$

Hydraulic power loss in the straight branch (W):

$$
W h_{21}=\Delta P_{21} \cdot Q_{2}
$$

Hydraulic power loss in the side branch (W):

$$
W h_{31}=\Delta P_{31} \cdot Q_{3}
$$

Symbols, Definitions, SI Units:

$d_{2} \quad$ Diameter of the straight and side branches (m)
$d_{3} \quad$ Diameter of the side branch (m)
$A_{1} \quad$ Cross-sectional area of the common branch $\left(m^{2}\right)$
$A_{2} \quad$ Cross-sectional area of the straight branch $\left(m^{2}\right)$
$A_{3} \quad$ Cross-sectional area of the side branch $\left(\mathrm{m}^{2}\right)$
Q1 Volume flow rate in the common branch ($\mathrm{m}^{3} / \mathrm{s}$)
$V_{1} \quad$ Mean velocity in the common branch (m / s)
Q2 Volume flow rate in the straight branch ($\mathrm{m}^{3} / \mathrm{s}$)
$V_{2} \quad$ Mean velocity in the straight branch (m / s)
Q3 Volume flow rate in the side branch ($\mathrm{m}^{3} / \mathrm{s}$)
$V_{3} \quad$ Mean velocity in the side branch (m / s)
$\mathrm{w}_{1} \quad$ Mass flow rate in the common branch (kg/s)
$\mathrm{w}_{2} \quad$ Mass flow rate in the straight branch (kg/s)
$w_{3} \quad$ Mass flow rate in the side branch (kg/s)
NRe_{1} Reynolds number in the common branch ()
NRe_{2} Reynolds number in the straight branch ()
NRe_{3} Reynolds number in the side branch ()
$r \quad$ Rounded radius (m)
$C_{M} \quad$ Coefficient ()
$C_{x C} \quad$ Coefficient ()
$C_{y c} \quad$ Coefficient ()
$\mathrm{K}_{211} \quad$ Pressure loss coefficient of the straight branch (based on mean velocity in the common branch) ()
$K_{311} \quad$ Pressure loss coefficient of the side branch (based on mean velocity in the common branch) ()

K_{212}	Pressure loss coefficient of the straight branch (based on mean velocity in the straight branch) ()
K_{313}	Pressure loss coefficient of the side branch (based on mean velocity in the side branch) ()
$\Delta \mathrm{P}_{21}$	Pressure loss in the straight branch (Pa)
$\Delta \mathrm{P}_{31}$	Pressure loss in the side branch (Pa)
$\Delta \mathrm{H}_{21}$	Head loss of fluid in the straight branch (m)
$\Delta \mathrm{H}_{31}$	Head loss of fluid in the side branch (m)
Wh21	Hydraulic power loss in the straight branch (W)
Wh31	Hydraulic power loss in the side branch (W)
ρ_{m}	Fluid density ($\mathrm{kg} / \mathrm{m}^{3}$)
v	Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
9	Gravitational acceleration ($\mathrm{m} / \mathrm{s}^{2}$)

Validity range:

- turbulent flow regime ($\mathrm{NRe}_{1} \geq 10^{4}$)
- diameter of common branch lower than or equal to diameter of right and straight branches ($\mathrm{d}_{3} \leq \mathrm{d}_{2}$)
- rounding ratio lower than or equal to $0.4\left(r / d_{3} \leq 0.4\right)$

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc
Edition: September 2019
© François Corre 2019

