

Combining radiused-edged T-junction Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a combining radiused-edged T-junction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Cross-sectional area of the lateral branch (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Cross-sectional area of the common branch and the straight branch (m²):

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Volume flow rate in the common branch (m^3/s) :

$$\boldsymbol{Q}_3 = \boldsymbol{Q}_1 + \boldsymbol{Q}_2$$

Mean velocity in the lateral branch (m/s):

$$U_1 = \frac{Q_1}{A_1}$$

Mean velocity in the straight branch (m/s):

$$U_2 = \frac{Q_2}{A_2}$$

Mean velocity in the common branch (m/s):

$$U_3 = \frac{Q_3}{A_2}$$

Mass flow rate in the lateral branch (kg/s):

$$G_1 = Q_1 \cdot \rho$$

Mass flow rate in the straight branch (kg/s):

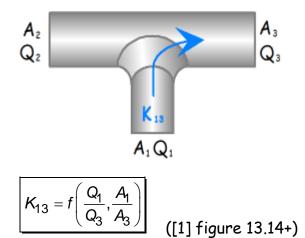
$$\mathbf{G}_{2} = \mathbf{Q}_{2} \cdot \boldsymbol{\rho}$$

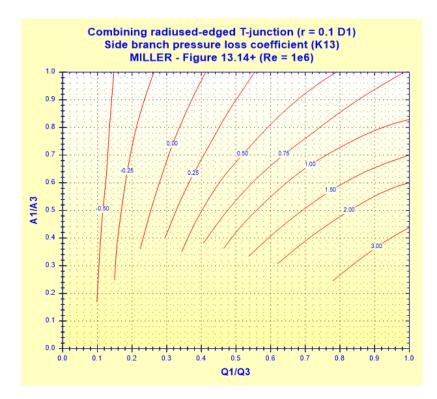
Mass flow rate in the common branch (kg/s):

$$G_3 = Q_3 \cdot \rho$$

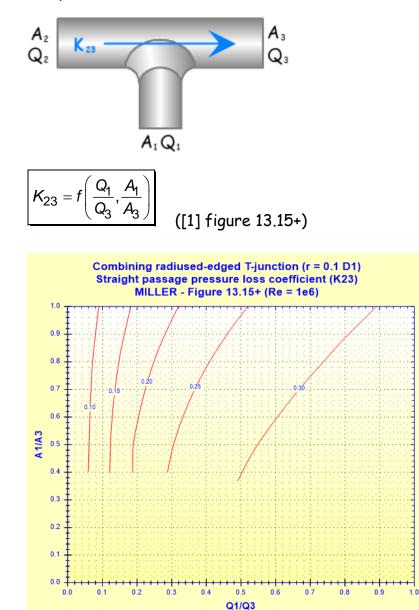
Reynolds number in the lateral branch:

$$\mathsf{Re}_1 = \frac{U_1 \cdot D_1}{v}$$


Reynolds number in the straight branch:


$$\mathsf{Re}_2 = \frac{U_2 \cdot D_2}{v}$$

Reynolds number in the common branch:


$$\mathsf{Re}_3 = \frac{U_3 \cdot D_2}{v}$$

Pressure loss coefficient of the lateral branch (based on mean velocity in the common branch):

Pressure loss coefficient of the straight branch (based on mean velocity in the common branch):

Pressure loss in the lateral branch (Pa):

$$\Delta P_{13} = K_{13} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.1)

Pressure loss in the straight branch (Pa):

$$\Delta P_{23} = K_{23} \cdot \frac{\rho \cdot U_3^2}{2}$$

([1] equation 13.2)

Head loss of fluid in the lateral branch (m):

$$\Delta H_{13} = K_{13} \cdot \frac{U_3^2}{2 \cdot g}$$

Head loss of fluid in the straight branch (m):

$$\Delta H_{23} = K_{23} \cdot \frac{U_3^2}{2 \cdot g}$$

Hydraulic power loss in the lateral branch (W):

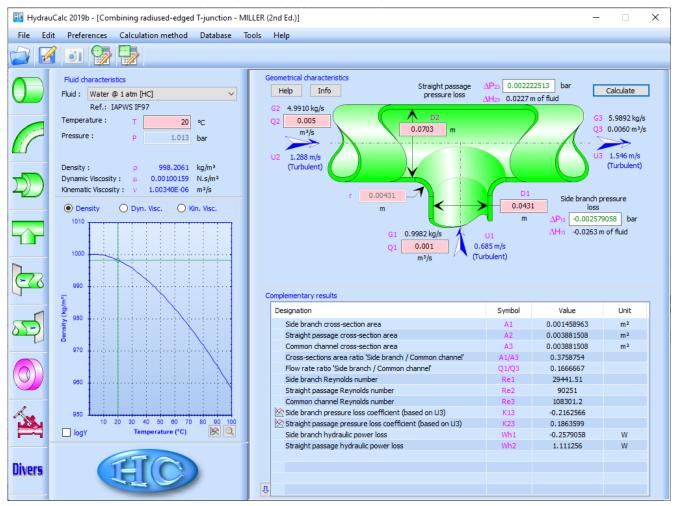
$$Wh_{13} = \Delta P_{13} \cdot Q_1$$

Hydraulic power loss in the straight branch (W):

the common branch) ()

 $Wh_{23} = \Delta P_{23} \cdot Q_2$

Symbols, Definitions, SI Units:


D ₁	Diameter of the lateral branch (m)
D2	Diameter of the common branch and the straight branch (m)
A_1	Cross-sectional area of the lateral branch (m²)
A 2	Cross-sectional area of the common branch and the straight branch (m ²)
Q_1	Volume flow rate in the lateral branch (m^3/s)
U ₁	Mean velocity in the lateral branch (m/s)
Q2	Volume flow rate in the straight branch (m³/s)
U2	Mean velocity in the straight branch (m/s)
Q₃	Volume flow rate in the common branch (m^3/s)
U ₃	Mean velocity in the common branch (m/s)
G_1	Mass flow rate in the lateral branch (kg/s)
G ₂	Mass flow rate in the straight branch (kg/s)
G ₃	Mass flow rate in the common branch (kg/s)
Re1	Reynolds number in the lateral branch ()
Re ₂	Reynolds number in the straight branch ()
Re ₃	Reynolds number in the common branch ()
r	Rounded radius (m)
K 13	Pressure loss coefficient of the lateral branch (based on mean velocity in
G1 G2 G3 Re1 Re2 Re3 r	Mass flow rate in the lateral branch (kg/s) Mass flow rate in the straight branch (kg/s) Mass flow rate in the common branch (kg/s) Reynolds number in the lateral branch () Reynolds number in the straight branch () Reynolds number in the common branch () Rounded radius (m)

K 23	Pressure loss coefficient of the straight branch (based on mean velocity
	in the common branch) ()
ΔP_{13}	Pressure loss in the lateral branch (Pa)
ΔP_{23}	Pressure loss in the straight branch (Pa)
ΔH_{13}	Head loss of fluid in the lateral branch (m)
ΔH_{23}	Head loss of fluid in the straight branch (m)
Wh ₁₃	Hydraulic power loss in the lateral branch (W)
Wh ₂₃	Hydraulic power loss in the straight branch (W)
ρ	Fluid density (kg/m³)
v	Fluid kinematic viscosity (m²/s)
, g	Gravitational acceleration (m/s^2)
3	

Validity range:

- turbulent flow regime ($\text{Re}_3 \ge 10^5$)
- rounded radius equal to 0.1 diameter of the lateral branch ($r = 0.1 D_1$)
- cross-sections area ratio equal to or greater than 0.3 $(A_1/A_2 \ge 0.3)$ note: for cross-sections area ratios lower than 0.3 the pressure loss coefficients "K₁₃" and "K₂₃" are extrapolated

Example of application:

HydrauCalc © François Corre 2019 Edition: September 2019