

Sudden Contraction Rounded Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden contraction rounded.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{d_2}{d_1}$$

Major cross-sectional area (m2):

$$A_1 = \pi \cdot \frac{{d_1}^2}{4}$$

Minor cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{{d_2}^2}{4}$$

Mean velocity in major diameter (m/s):

$$V_1 = \frac{Q}{A_1}$$

Mean velocity in minor diameter (m/s):

$$V_2 = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in major diameter:

$$N_{\text{Re}_1} = \frac{V_1 \cdot d_1}{v}$$

Reynolds number in minor diameter:

$$N_{\text{Re}_2} = \frac{V_2 \cdot d_2}{v}$$

Jet contraction coefficient:

■ $0 \le r/d_2 \le 1$:

$$\lambda = 1 + 0.622 \cdot \left(1 - 0.30 \cdot \sqrt{\frac{r}{d_2}} - 0.70 \cdot \frac{r}{d_2}\right)^4 \cdot \left(1 - 0.215 \cdot \beta^2 - 0.785 \cdot \beta^5\right)$$
 ([1] equation

10.7)

■ $r/d_2 > 1$:

$$\lambda = 1$$

Local resistance coefficient (NRe₂ \geq 10⁴):

■ $0 \le r/d_2 \le 1$:

$$K_2 = 0.0696 \cdot \left(1 - 0.569 \cdot \frac{r}{d_2}\right) \cdot \left(1 - \sqrt{\frac{r}{d_2}} \cdot \beta\right) \cdot \left(1 - \beta^5\right) \cdot \lambda^2 + (\lambda - 1)^2$$
([1] equation 10.6)

■ $r/d_2 > 1$:

$$K_2 = 0.030 \cdot (1-\beta) \cdot (1-\beta^4)$$
 ([1] equation 10.8)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$K = K_2$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V_2^2}{2}$$

$$\Delta H = K \cdot \frac{{v_2}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

```
d_1
          Major diameter (m)
d<sub>2</sub>
          Minor diameter (m)
          Ratio of small to large diameter ()
ß
          Major cross-sectional area (m<sup>2</sup>)
A_1
          Minor cross-sectional area (m<sup>2</sup>)
A_2
          Volume flow rate (m<sup>3</sup>/s)
Q
G
          Mass flow rate (kg/s)
V_1
          Mean velocity in major diameter (m/s)
V_2
          Mean velocity in minor diameter (m/s)
NRe<sub>1</sub>
          Reynolds number in major diameter ()
NRe<sub>2</sub>
          Reynolds number in minor diameter ()
          Radius of the round (m)
r
          Jet contraction coefficient ()
λ
          Local resistance coefficient ()
K<sub>2</sub>
K
          Total pressure loss coefficient (based on mean velocity in minor
          diameter) ()
\Delta P
          Total pressure loss (Pa)
\Delta H
          Total head loss of fluid (m)
Wh
          Hydraulic power loss (W)
          Fluid density (kg/m<sup>3</sup>)
\rho_{m}
          Fluid kinematic viscosity (m<sup>2</sup>/s)
ν
          Gravitational acceleration (m/s^2)
g
```

Validity range:

- turbulent flow regime in minor diameter (NRe₂ \geq 10⁴)
- round radius less than the radius difference ($r < (d_1/2-d_2/2)$)

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

Edition: January 2020

HydrauCalc © François Corre 2020