

Gradual Contraction Circular Cross-Section (CRANE)

Model description:

This model of component calculates the head loss (pressure drop) generated by the flow in a gradual contraction.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{D_1}{D_2}$$

Half top angle of cone (°):

$$\theta = \tan^{-1} \left(\frac{D_2 - D_1}{2 \cdot L} \right)$$

Minor cross-sectional area (m²):

$$A_1 = \pi \cdot \frac{D_1^2}{4}$$

Major cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{D_2^2}{4}$$

Mean velocity in minor diameter (m/s):

$$V_1 = \frac{q}{A_1}$$

Mean velocity in major diameter (m/s):

$$V_2 = \frac{q}{A_2}$$

Mass flow rate (kg/s):

$$G = q \cdot \rho$$

Fluid volume in the truncated cone (m³):

$$V = L \cdot \frac{\pi}{3} \cdot \left(\left(\frac{D_1}{2} \right)^2 + \left(\frac{D_2}{2} \right)^2 + \left(\frac{D_1}{2} \right) \cdot \left(\frac{D_2}{2} \right) \right)$$

Fluid mass in the truncated cone (kg):

$$M = V \cdot \rho$$

Reynolds number in minor diameter:

$$Re_1 = \frac{v_1 \cdot D_1}{v}$$

Reynolds number in major diameter:

$$\mathsf{Re}_2 = \frac{\mathsf{v}_2 \cdot \mathsf{D}_2}{\mathsf{v}}$$

Local resistance coefficient:

■ θ ≤ 45°:

$$K_1 = 0.8 \sin\left(\frac{\theta}{2}\right) \left(1 - \beta^2\right)$$

(Equation 3-18)

■ 45° < θ ≤ 180°:

$$K_1 = 0.5 \sqrt{\sin\left(\frac{\theta}{2}\right)} (1 - \beta^2)$$

(Equation 3-18.1)

■ $5^{\circ} \le \theta \le 180^{\circ}$:

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$K = K_1$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot V_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{{v_1}^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot q$$

Symbols, Definitions, SI Units:

```
Minor diameter (m)
D_1
D2
          Major diameter (m)
          Ratio of small to large diameter ()
ß
L
          Contraction length (m)
θ
          Half top angle of cone (°)
          Minor cross-sectional area (m<sup>2</sup>)
A_1
          Major cross-sectional area (m<sup>2</sup>)
A_2
          Mean velocity in minor diameter (m/s)
V1
          Mean velocity in major diameter (m/s)
V2
          Volume flow rate (m<sup>3</sup>/s)
q
G
          Mass flow rate (kg/s)
          Fluid volume in the truncated cone (m<sup>3</sup>)
٧
          Fluid mass in the truncated cone (kg)
M
Re<sub>1</sub>
          Reynolds number in minor diameter ()
          Reynolds number in major diameter ()
Re<sub>2</sub>
          Local resistance coefficient ()
K_1
Κ
          Total pressure loss coefficient (based on mean velocity in minor
diameter) ()
\Lambda P
          Total pressure loss (Pa)
\Delta H
          Total head loss of fluid (m)
Wh
          Hydraulic power loss (W)
          Fluid density (kg/m<sup>3</sup>)
ρ
         Fluid kinematic viscosity (m<sup>2</sup>/s)
ν
          Gravitational acceleration (m/s^2)
q
```

Validity range:

• turbulent flow regime in minor diameter ($Re_1 \ge 10^4$)

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 - Edition 1999

HydrauCalc Edition: November 2018

© François Corre 2018