S-shaped Bends

(with flow in two perpendicular planes) Rectangular Cross-Section
(IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of S-shaped bends (with flow in two perpendicular planes) whose cross-section is rectangular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the first bend.

Model formulation:

Hydraulic diameter (m):

$$
\mathrm{D}_{\mathrm{h}}=\frac{2 \cdot a_{0} \cdot b_{0}}{a_{0}+b_{0}}
$$

([1] diagram 6-1)
Cross-section area (m^{2}):

$$
F_{0}=a_{0} \cdot b_{0}
$$

Total length measured along the axis (m):

$$
I=2 \cdot\left(2 \cdot \pi \cdot R_{0} \cdot \frac{\delta}{360}\right)+I_{e l}
$$

Mean velocity (m / s):

$$
w_{0}=\frac{Q}{F_{0}}
$$

Mass flow rate (kg / s):

$$
G=Q \cdot \rho
$$

Fluid volume $\left(m^{3}\right)$:

$$
\mathrm{V}=F_{0} \cdot 1
$$

Fluid mass (kg):

$$
M=V \cdot \rho
$$

Reynolds number:

$$
\operatorname{Re}=\frac{w_{0} \cdot D_{h}}{v}
$$

Relative roughness:

$$
\bar{\Delta}=\frac{\Delta}{D_{h}}
$$

- Case of relative radius of curvature lower than $3\left(\mathrm{R}_{0} / \mathrm{b}_{0}<3\right) \quad$ ([1] diagram 6-1)

Coefficient of effect of the roughness:

$$
k_{\Delta}=f\left(\frac{R_{0}}{b_{0}}, \mathrm{Re}, \bar{\Delta}\right)
$$

([1] diagram 6-1)

- $0.50 \leq R_{0} / b_{0} \leq 0.55$

$\bar{\Delta} \overline{c \mid}$	Re	
	$3 \cdot 10^{3}-4 \cdot 10^{4}$	$>4 \cdot 10^{4}$
0	1.0	1.0
$0-0.001$	1.0	$1+0.5 \cdot 10^{3} \cdot \bar{\Delta}$
>0.001	1.0	1.5

- $R_{0} / b_{0}>0.55$

$\bar{\Delta}$		Re	
	$3 \cdot 10^{3}-4 \cdot 10^{4}$	$>4 \cdot 10^{4}-2 \cdot 10^{5}$	$>2 \cdot 10^{5}$
0	1.0	1.0	1.0
$0-0.001$	1.0	$\lambda_{\Delta} / \lambda_{\text {sm }}$	$1+10^{3} \cdot \bar{\Delta}$
>0.001	1.0	2.0	2.0

with:
$\lambda_{\text {sm }}$: Darcy friction factor for hydraulically smooth pipe ($\bar{\Delta}=0$) at Re
λ_{Δ} : Darcy friction factor for rough pipe ($\bar{\Delta}=\Delta / D_{h}$) at Re
Coefficient of effect of the Reynolds number ($\operatorname{Re} \geq 10^{4}$):
$k_{\mathrm{Re}}=f\left(\operatorname{Re}, \frac{R_{0}}{b_{0}}\right)$
([1] diagram 6-1)
Smooth bend (Ro/bo <= 3) Reynolds number correction factor
IDELCHIK - Diagram 6-1 - graph (e)

Coefficient of effect of the angle:
$A 1=f(\delta)$
([1] diagram 6-1)

Coefficient of effect of the relative curvature radius:

$$
B 1=f\left(\frac{R_{0}}{b_{0}}\right)
$$

([1] diagram 6-1)

- $0.5 \leq \mathrm{R}_{0} / \mathrm{b}_{0} \leq 1.5$

- $R_{0} / b_{0}>1.5$

Coefficient of effect of the relative elongation of the cross section:

- $a_{0} \geq b_{0}$

$$
C 1=f\left(\frac{a_{0}}{b_{0}}\right)
$$

([1] diagram 6-1)

- $a_{0}<b_{0}$

$$
C 1=f\left(\frac{b_{0}}{a_{0}}\right)
$$

Reynolds number correction factor that depends on the relative curvature radius:

$$
A 2=f\left(\frac{R_{0}}{b_{0}}\right)
$$

([1] diagram 6-1)

R_{0} / b_{0}	$0.50-0.55$	$>0.55-0.70$	$>0.70-1.0$	$>1.0-2.0$	>2.0
$A 2 \times 10^{-3}$	4.0	6.0	$4.0-2.0$	1.0	0.6

Smooth bend (Ro/bo < 3)
Reynolds number correction factor
IDELCHIK - Diagram 6-1

Pressure loss coefficient (without friction):

- $R e \geq 10^{4}$

$$
\zeta^{\prime} 100=k_{\Delta} \cdot k_{\mathrm{Re}} \cdot A 1 \cdot B 1 \cdot C 1
$$

- $3 \cdot 10^{3}<\operatorname{Re}<10^{4}$

$$
\zeta^{\prime}{ }_{\text {loc }}=\frac{A 2}{\mathrm{Re}}+A 1 \cdot B 1 \cdot C 1
$$

([1] diagram 6-1)

Case of relative radius of curvature greater than or equal to $3\left(R_{0} / b_{0} \geq 3\right)$ ([1] diagram 6-2)

Total friction factor with smooth wall:

- $4 \cdot 10^{2} \leq \operatorname{Re}<10^{5}$

$$
\lambda_{e l}=f\left(\operatorname{Re}, \frac{R_{0}}{D_{0}}\right)
$$

([1] diagram 6-2)

Smooth bend with circular cross-section (Ro/Do >=3) Coefficient 'lambda el'
IDELCHIK - Diagram 6-2 - graph (a)

- $\operatorname{Re} \geq 10^{5}$

$$
\lambda_{e l}=f\left(\frac{R_{0}}{D_{0}}\right)
$$

([1] diagramme 6-2)

Smooth bend with circular cross-section (Ro/Do >=3) Coefficient 'lambda el'

Estimation of the coefficient of local resistance

$$
\zeta^{\prime}{ }_{\text {loc }}=\left(\lambda_{e l}-\lambda_{s}\right) \cdot \frac{2 \cdot \pi \cdot R_{0} \cdot \delta / 360}{D_{h}}
$$

with:
λ_{s} : Darcy friction factor for hydraulically smooth pipe $(\bar{\Delta}=0)$ at Re

Case of the S-shaped Bends ([1] diagram 6-19)

Darcy friction factor:

See Straight Pipe - Rectangular Cross-Section and Nonuniform Roughness Walls (IDELCHIK)

- Darcy friction factor for circular cross-section

$$
\lambda_{\text {circ }}=f\left(\operatorname{Re}, \frac{\Delta}{D_{h}}\right)
$$

- Correction for Darcy friction factor for noncircular cross-section
- $a_{0} \geq b_{0}$

$$
k_{\text {non }-c}=f\left(b_{0} / a_{0}\right)
$$

([1] diagram 2-6)

- $a_{0}<b_{0}$

$$
k_{\text {non-c }}=f\left(a_{0} / b_{0}\right) \quad \text { ([1] diagram 2-6) }
$$

- laminar flow (Re ≤ 2000):

Straight pipe with rectangular cross-section Correction factor for rectangular cross-section ($\operatorname{Re}<=\mathbf{2 0 0 0}$) IDELCHIK - Diagram 2-6

- turbulent flow ($\mathrm{Re}>2000$):

- Darcy friction factor for rectangular cross-section

$$
\lambda_{\text {rect }}=\lambda_{\text {circ }} \cdot k_{\text {non-c }}
$$

([1] diagram 2-6)

Pressure loss friction factor:

$$
\zeta_{t r}=\lambda \cdot\left[2 \cdot\left(0.0175 \cdot \delta \cdot \frac{R_{0}}{D_{h}}\right)+\frac{I_{e l}}{D_{h}}\right]
$$

([1] diagram 6-19)

Interaction correction factor:

$$
A=f\left(\frac{L_{e l}}{D_{h}}, \delta\right)
$$

([1] diagram 6-19 graph a)

S-shaped bends (flow in one plane)
Correction factor ' A '
IDELCHIK - Diagram 6-19 - graph (a)

Total pressure loss coefficient (based on the mean velocity in the bends):

$$
\zeta=A \cdot \zeta_{l o c}^{\prime}+\zeta_{\text {fr }} \quad \text { ([1] diagram 6-19) }
$$

Total pressure loss (Pa):

$$
\Delta P=\zeta \cdot \frac{\rho \cdot w_{0}^{2}}{2}
$$

([1] diagram 6-19)

Total head loss of fluid (m):

$$
\Delta H=\zeta \cdot \frac{w_{0}{ }^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Straight length of equivalent pressure loss (m):

$$
L_{\text {eq }}=\zeta \cdot \frac{D_{h}}{\lambda_{\text {rect }}}
$$

Symbols, Definitions, SI Units:

ao \quad Rectangular cross-section width (m)
bo Rectangular cross-section height (m)
$D_{h} \quad$ Bend hydraulic diameter (m)
Fo Cross-sectional area (m^{2})
I Total length measured along the axis (m)
Ro Radius of curvature (m)
$\delta \quad$ Curvature angle of each bend $\left({ }^{\circ}\right)$
$Q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
wo Mean velocity (m / s)
$G \quad$ Mass flow rate (kg/s)
$V \quad$ Fluid volume (m^{3})
$M \quad$ Fluid mass (kg)
Re Reynolds number ()
$\Delta \quad$ Absolute roughness of walls (m)
$\bar{\Delta} \quad$ Relative roughness of walls ()
$k_{\Delta} \quad$ Coefficient that allows for the effect of the roughness ()
$k_{\text {Re }} \quad$ Coefficient that allows for the effect of the Reynolds number ()
A1 Coefficient that allows for the effect of the angle ()
B1 Coefficient that allows for the effect of the relative curvature radius ()
C1 Coefficient that allows for the effect of the relative elongation of the cross section ()
A2 Reynolds number correction factor that depends on the relative curvature radius ()
ζ^{\prime} loc Coefficient of local resistance ()
$\lambda_{\text {circ }} \quad$ Darcy friction coefficient for circular cross-section ()
knon-c Correction for Darcy friction factor for noncircular cross-section ()
$\lambda_{\text {rect }} \quad$ Darcy friction coefficient for rectangular cross-section ()
$\lambda_{\text {el }} \quad$ Friction coefficient ()
$\zeta_{\text {fr }} \quad$ Pressure loss friction factor ()
A Interaction correction factor ()
$\zeta \quad$ Total pressure loss coefficient (based on the mean velocity in the bend) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$L_{\text {eq }} \quad$ Straight length of equivalent pressure loss (m)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- stabilized flow upstream bend
- length of the straight section downstream: $\geq 10 \mathrm{Dh}_{h}$
- relative radius of curvature: greater than or equal to $1\left(R_{0} / b_{0} \geq 1\right)$
- curvature angle of one bend: 0 to 180°
for ' δ ' angles less than 60° the pressure loss coefficient ' ζ ' is estimated by taking into account an interaction correction factor ' A ' corresponding to that of an angle of 60°.
for ' δ ' angles greater than 90° the pressure loss coefficient ' ζ ' is estimated by taking into account an interaction correction factor ' A ' corresponding to that of an angle of 90°.

■ case of relative radius of curvature lower than $3\left(R_{0} / b_{0}<3\right)$

- flow regime: $\operatorname{Re} \geq 3 \cdot 10^{3}$
- case of relative radius of curvature greater than or equal to $3\left(R_{0} / b_{0} \geq 3\right)$
- flow regime: $500 \leq \operatorname{Re} \leq 38 \cdot 10^{3}$
for Reynolds number 'Re' lower than 500 or greater than $38 \cdot 10^{3}$, the coefficient ' $\lambda_{\text {el }}$ ' is linearly extrapolated.

Example of application:

（2）目暘品

References：
［1］Handbook of Hydraulic Resistance，3rd Edition，I．E．Idelchik

HydrauCalc

Edition：June 2022

