

S-shaped Bends (with flow in two perpendicular planes) Rectangular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the head loss (pressure drop) of S-shaped bends (with flow in two perpendicular planes) whose cross-section is rectangular and constant. In addition, the flow is assumed fully developed and stabilized upstream of the first bend.

Model formulation:

$$D_{h} = \frac{2 \cdot a_{0} \cdot b_{0}}{a_{0} + b_{0}} \quad ([1] \text{ diagram 6-1})$$

Cross-section area (m²):

$$\mathsf{F}_{_{0}}=\textit{a}_{_{0}}\cdot\textit{b}_{_{0}}$$

Total length measured along the axis (m):

$$\mathbf{I} = 2 \cdot \left(2 \cdot \pi \cdot R_0 \cdot \frac{\delta}{360} \right) + I_{el}$$

Mean velocity (m/s):

$$W_0 = \frac{Q}{F_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Fluid volume (m³):

$$V = F_0 \cdot I$$

Fluid mass (kg):

$$\mathsf{M} = \mathsf{V} \cdot \rho$$

Reynolds number:

$$\mathsf{Re} = \frac{W_0 \cdot D_h}{v}$$

Relative roughness:

$$\overline{\Delta} = \frac{\Delta}{D_h}$$

• Case of relative radius of curvature lower than 3 ($R_0/b_0 < 3$) ([1] diagram 6-1)

Coefficient of effect of the roughness:

$$k_{\Delta} = f\left(\frac{R_0}{b_0}, \text{Re}, \overline{\Delta}\right)$$
 ([1] diagram 6-1)

• $0.50 \le R_0/b_0 \le 0.55$

Δ	Re		
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴	
0	1.0	1.0	
0 - 0.001	1.0	$1 + 0.5 \cdot 10^3 \cdot \overline{\Delta}$	
> 0.001	1.0	1.5	

• $R_0/b_0 > 0.55$

Δ		Re	
	3·10 ³ - 4·10 ⁴	> 4·10 ⁴ - 2·10 ⁵	> 2·10 ⁵
0	1.0	1.0	1.0
0 - 0.001	1.0	λ_{Δ} / $\lambda_{ m sm}$	$1 + 10^3 \cdot \overline{\Delta}$
> 0.001	1.0	2.0	2.0

with:

 λ_{sm} : Darcy friction factor for hydraulically smooth pipe ($\overline{\Delta}$ = 0) at Re λ_{Δ} : Darcy friction factor for rough pipe ($\overline{\Delta}$ = Δ/D_h) at Re

Coefficient of effect of the Reynolds number ($Re \ge 10^4$):

Coefficient of effect of the angle:

Coefficient of effect of the relative curvature radius:

$$B1 = f\left(\frac{R_0}{b_0}\right) \qquad ([1] \text{ diagram 6-1})$$

• $0.5 \le R_0/b_0 \le 1.5$

• $R_0/b_0 > 1.5$

Coefficient of effect of the relative elongation of the cross section:

Reynolds number correction factor that depends on the relative curvature radius:

 $A2 = f\left(\frac{R_0}{b_0}\right)$ ([1] diagram 6-1)

R ₀ /b ₀	0.50 - 0.55	>0.55 - 0.70	>0.70 - 1.0	>1.0 - 2.0	>2.0
A2 × 10 ⁻³	4.0	6.0	4.0 - 2.0	1.0	0.6

Pressure loss coefficient (without friction):

• $\text{Re} \ge 10^4$

 $\zeta'_{loc} = k_{\Delta} \cdot k_{Re} \cdot A1 \cdot B1 \cdot C1 \qquad ([1] \text{ diagram 6-1})$

•
$$3 \cdot 10^3 < \text{Re} < 10^4$$

$$\zeta'_{loc} = \frac{A2}{\text{Re}} + A1 \cdot B1 \cdot C1$$
 ([1] diagram 6-1)

■ Case of relative radius of curvature greater than or equal to 3 ($R_0/b_0 \ge 3$) ([1] diagram 6-2)

• Re $\geq 10^5$

$$\lambda_{el} = f\left(\frac{R_0}{D_0}\right)$$
 ([1] diagramme 6-2)

Estimation of the coefficient of local resistance

$$\zeta'_{loc} = \left(\lambda_{el} - \lambda_s\right) \cdot \frac{2 \cdot \pi \cdot R_0 \cdot \delta / 360}{D_h}$$

with:

 λ_{s} : Darcy friction factor for hydraulically smooth pipe ($\overline{\Delta}$ = 0) at Re

■ Case of the S-shaped Bends ([1] diagram 6-19)

Darcy friction factor:

See <u>Straight Pipe - Rectangular Cross-Section and Nonuniform Roughness</u> <u>Walls (IDELCHIK)</u>

Darcy friction factor for circular cross-section

$$\lambda_{circ} = f\left(\operatorname{Re}, \frac{\Delta}{D_h}\right)$$

- Correction for Darcy friction factor for noncircular cross-section
 - $\mathbf{a}_{0} \geq \mathbf{b}_{0}$ $\mathbf{k}_{non-c} = f(\mathbf{b}_{0}/\mathbf{a}_{0})$ $\mathbf{a}_{0} < \mathbf{b}_{0}$ $\mathbf{k}_{non-c} = f(\mathbf{a}_{0}/\mathbf{b}_{0})$ ([1] diagram 2-6) ([1] diagram 2-6)
 - laminar flow (Re \leq 2000):

• turbulent flow (Re > 2000):

Darcy friction factor for rectangular cross-section

 $\lambda_{rect} = \lambda_{circ} \cdot k_{non-c} \qquad ([1] \text{ diagram 2-6})$

Pressure loss friction factor:

$$\zeta_{fr} = \lambda \cdot \left[2 \cdot \left(0.0175 \cdot \delta \cdot \frac{R_0}{D_h} \right) + \frac{I_{el}}{D_h} \right]$$
 ([1] diagram 6-19)

Interaction correction factor:

Total pressure loss coefficient (based on the mean velocity in the bends):

 $\zeta = \mathbf{A} \cdot \zeta'_{\mathit{loc}} + \zeta_{\mathit{fr}}$

([1] diagram 6-19)

Total pressure loss (Pa):

$$\Delta P = \zeta \cdot \frac{\rho \cdot {w_0}^2}{2}$$

([1] diagram 6-19)

Total head loss of fluid (m):

$$\Delta H = \zeta \cdot \frac{W_0^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Straight length of equivalent pressure loss (m):

$$L_{eq} = \zeta \cdot \frac{D_h}{\lambda_{rect}}$$

Symbols, Definitions, SI Units:

- a₀ Rectangular cross-section width (m)
- b₀ Rectangular cross-section height (m)
- D_h Bend hydraulic diameter (m)
- F₀ Cross-sectional area (m²)
- I Total length measured along the axis (m)
- R₀ Radius of curvature (m)
- δ Curvature angle of each bend (°)
- Q Volume flow rate (m³/s)
- w₀ Mean velocity (m/s)
- G Mass flow rate (kg/s)
- V Fluid volume (m³)
- M Fluid mass (kg)
- Re Reynolds number ()
- Δ Absolute roughness of walls (m)
- $ar{\Delta}$ Relative roughness of walls ()
- k_{Δ} Coefficient that allows for the effect of the roughness ()
- k_{Re} Coefficient that allows for the effect of the Reynolds number ()
- A1 Coefficient that allows for the effect of the angle ()
- B1 Coefficient that allows for the effect of the relative curvature radius ()
- C1 Coefficient that allows for the effect of the relative elongation of the cross section ()
- A2 Reynolds number correction factor that depends on the relative curvature radius ()
- ζ'_{loc} Coefficient of local resistance ()
- λ_{circ} Darcy friction coefficient for circular cross-section ()

K non-c λrect λel	Correction for Darcy friction factor for noncircular cross-section () Darcy friction coefficient for rectangular cross-section () Friction coefficient ()
ζfr	Pressure loss friction factor ()
A	Interaction correction factor ()
ζ	Total pressure loss coefficient (based on the mean velocity in the bend)
	0
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
Leq	Straight length of equivalent pressure loss (m)
ρ ν g	Fluid density (kg/m³) Fluid kinematic viscosity (m²/s) Gravitational acceleration (m/s²)

Validity range:

- stabilized flow upstream bend
- length of the straight section downstream: $\geq 10~D_h$
- relative radius of curvature: greater than or equal to 1 ($R_0/b_0 \ge 1$)
- curvature angle of one bend: 0 to 180°

for ' δ ' angles less than 60° the pressure loss coefficient ' ζ ' is estimated by taking into account an interaction correction factor 'A' corresponding to that of an angle of 60°.

for ' δ ' angles greater than 90° the pressure loss coefficient ' ζ ' is estimated by taking into account an interaction correction factor 'A' corresponding to that of an angle of 90°.

- **\blacksquare** case of relative radius of curvature lower than 3 (R₀/b₀ < 3)
 - flow regime: $Re \ge 3 \cdot 10^3$
- case of relative radius of curvature greater than or equal to 3 ($R_0/b_0 \ge 3$)
 - flow regime: $500 \le \text{Re} \le 38 \cdot 10^3$

for Reynolds number 'Re' lower than 500 or greater than $38\cdot10^3$, the coefficient ' λ_{el} ' is linearly extrapolated.

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

HydrauCalc © François Corre 2022 Edition: June 2022