Long radius nozzle
(ISO 5167-3:2003)

Model description:

This model of component determines the fluid flow through a long radius nozzle flowmeter, according to the international standard "ISO-5167-3:2003".

Model formulation:

Diameter ratio:

$$
\beta=\frac{d}{D}
$$

Orifice cross-sectional area $\left(m^{2}\right)$:

$$
s=\pi \cdot \frac{d^{2}}{4}
$$

Pipe cross-sectional area $\left(m^{2}\right)$:

$$
S=\pi \cdot \frac{D^{2}}{4}
$$

Mean velocity in orifice $(\mathrm{m} / \mathrm{s})$:

$$
v=\frac{q_{v}}{s}
$$

Mean velocity in pipe (m / s):

$$
V=\frac{q_{v}}{S}
$$

Reynolds number referred to orifice diameter:

$$
\operatorname{Re}_{d}=\frac{v \cdot d}{v}
$$

Reynolds number referred to internal pipe diameter:

Discharge coefficient:

$$
C=0.9965-0.00653 \cdot \sqrt{\frac{10^{6} \cdot \beta}{\mathrm{Re}_{D}}}
$$

Expansibility factor:

$$
\varepsilon=1 \quad \text { ([1] §3.3.6) for incompressible fluid (liquid) }
$$

Mass flow rate (kg/s):

$$
q_{m}=\frac{C}{\sqrt{1-\beta^{4}}} \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^{2} \cdot \sqrt{2 \cdot \Delta p \cdot \rho}
$$

([1] §5.1 eq. 1 and [2] §4 eq. 1)
Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$):

$$
q_{v}=\frac{q_{m}}{\rho}
$$

([1] §5.1 eq. 3 and [2] §4 eq. 2)

Velocity of approach factor:

$$
C_{v}=\frac{1}{\sqrt{1-\beta^{4}}}
$$

Flow coefficient:

$$
\begin{equation*}
C_{f}=C \cdot \frac{1}{\sqrt{1-\beta^{4}}} \tag{1}
\end{equation*}
$$

Long radius nozzle - ISO-5167-3:2003
Flow coefficient

Net pressure loss (Pa):

$$
\Delta \varpi=\frac{\sqrt{1-\beta^{4}}-C \cdot \beta^{2}}{\sqrt{1-\beta^{4}}+C \cdot \beta^{2}} \cdot \Delta p
$$

([1] § 5.1.8 eq. 5)

Net pressure loss coefficient (based on the mean pipe velocity):
$K=\frac{\Delta \varpi}{0.5 \cdot \rho \cdot V^{2}}$

Net head loss (m):
$\Delta h=\frac{\Delta \pi}{\rho \cdot g}$

Net hydraulic power loss (W):

$$
W h=\Delta \varpi \cdot q
$$

Measured head loss (m):

$$
\Delta H=\frac{\Delta P}{\rho \cdot g}
$$

Symbols, Definitions, SI Units:

d \quad Orifice diameter (m)
$D \quad$ Internal pipe diameter (m)
$\beta \quad$ Diameter ratio ()
$s \quad$ Orifice cross-sectional area $\left(m^{2}\right)$
$S \quad$ Pipe cross-sectional area (m^{2})
$q_{v} \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$v \quad$ Mean velocity in orifice (m / s)
$V \quad$ Mean velocity in pipe (m / s)
Red Reynolds number referred to orifice ()
Red Reynolds number referred to pipe ()
$C \quad$ Discharge coefficient ()
$\varepsilon \quad$ Expansibility factor ()
$q_{m} \quad$ Mass flow rate (kg / s)
$C_{v} \quad$ Velocity of approach factor ()
$C_{f} \quad$ Flow coefficient ()
$\Delta \varpi \quad$ Net pressure loss (Pa)
$\Delta \mathrm{P} \quad$ Measured pressure loss (Pa)
$K \quad$ Net pressure loss coefficient (based on the mean pipe velocity) ()
$\Delta h \quad$ Net head loss of fluid (m)
Wh Net hydraulic power loss (W)
$\Delta H \quad$ Measured head loss of fluid (m)
$\rho \quad$ Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Limit of use ([2] §5.2.6.1):

- $50 \mathrm{~mm} \leq \mathrm{D} \leq 630 \mathrm{~mm}$
- $0.2 \leq \beta \leq 0.8$
- $10^{4} \leq \operatorname{ReD}_{D} \leq 10^{7}$

Example of application:

References:

[1] ISO 5167-1:2003 - Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full Part 1: General principles and requirements
[2] ISO 5167-3:2003 - Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full Part 3: Nozzles and Venturi nozzles

