

Sharp-edged Grid Circular Cross-Section (MILLER)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sharp-edged grid (perforated plate) installed in a straight pipe.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

$$A_1 = \pi \cdot \frac{D^2}{4}$$

Cross-section area of one hole (m²):

$$a_2 = \pi \cdot \frac{d^2}{4}$$

Clear cross-sectional area of the grid (m²):

$$A_2 = a_2 \cdot N$$

Equivalent section orifice diameter (m):

$$d_{e} = \sqrt{\frac{4 \cdot A_{2}}{\pi}}$$

Mean velocity in pipe (m/s):

$$U = \frac{Q}{A_1}$$

Mean velocity in holes (m/s):

$$u = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in pipe:

$$\operatorname{Re}_1 = \frac{U \cdot D}{v}$$

Reynolds number in holes:

$$\operatorname{Re}_2 = \frac{u \cdot d}{v}$$

Local resistance Coefficient:

■
$$Re_2 < 10^4$$

$$K_0 = f\left(\text{Re}_2, \frac{d_e}{D}\right)$$
 ([1] figure 14.29)

Total pressure loss coefficient (based on mean velocity in pipe):

$$K = K_0$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho \cdot U^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{U^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Symbols, Definitions, SI Units:

- D Pipe internal diameter (m)
- A1 Pipe cross-sectional area (m²)
- d Hole diameter (m)
- a₂ Cross-section area of one hole (m²)
- N Holes number ()
- A₂ Clear cross-sectional area of the grid (m²)
- de Equivalent section orifice diameter (m)
- Q Volume flow rate (m³/s)
- G Mass flow rate (kg/s)
- U Mean velocity in pipe (m/s)
- u Mean velocity in holes (m/s)
- Re1 Reynolds number in pipe ()

Re ₂	Reynolds number in holes ()
Ko	Local resistance coefficient ()
Κ	Total pressure loss coefficient (based on mean velocity in pipe) ()
ΔP	Total pressure loss (Pa)
ΔH	Total head loss of fluid (m)
Wh	Hydraulic power loss (W)
ρ	Fluid density (kg/m³)
ν	Fluid kinematic viscosity (m²/s)
9	Gravitational acceleration (m/s^2)

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the orifice
 - note: 1) for diameters ratios " d_e/D " lower than 0.4 or greater than 0.8 and when the Reynolds number in the orifice "Re₂" is lower than 10⁴, the local resistance coefficient "K₀" is extrapolated

Example of application:

References:

[1] Internal Flow System, Second Edition, D.S. Miller