

Bevel-Edged Orifice (with Transition) Circular Cross-Section (IDELCHIK)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a bevel-edged orifice installed in a straight pipe with transition.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$D_h = D_0$$

Major pipe cross-section area (m²):

$$F_1 = \pi \cdot \frac{D_1^2}{4}$$

Minor pipe cross-section area (m²):

$$F_2 = \pi \cdot \frac{D_2^2}{4}$$

Orifice cross-section area (m²):

$$F_0 = \pi \cdot \frac{{D_0}^2}{4}$$

Mean velocity in major pipe (m/s):

$$W_1 = \frac{Q}{F_1}$$

Mean velocity in minor pipe (m/s):

$$W_2 = \frac{Q}{F_2}$$

Mean velocity in orifice (m/s):

$$W_0 = \frac{Q}{F_0}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in major pipe:

$$\mathsf{Re}_1 = \frac{W_1 \cdot D_1}{v}$$

Reynolds number in minor pipe:

$$\mathsf{Re}_2 = \frac{w_2 \cdot D_2}{v}$$

Reynolds number in orifice:

$$\mathsf{Re}_{0} = \frac{W_{0} \cdot D_{0}}{v}$$

 $\blacksquare \ Re_0 \geq 10^5$

Local resistance coefficient:

$$\zeta = \zeta' \cdot \left(1 - \frac{F_0}{F_1}\right)^{0.75} + \left(1 - \frac{F_0}{F_2}\right)^2 + 2 \cdot \sqrt{\zeta'} \cdot \left(1 - \frac{F_0}{F_1}\right)^{0.375} \cdot \left(1 - \frac{F_0}{F_2}\right)$$

([2] diagram 4-13)

(with I/ D_h = 0.1)

Coefficient de perte de pression (basé sur la vitesse dans le grand tuyau) :

(with $I/D_h = 0.1$)

Re₀ < 10⁵
 Quadratic local resistance coefficient:

$$\zeta_{quad} = \left[\zeta' \cdot \left(1 - \frac{F_0}{F_1}\right)^{0.75} + \left(1 - \frac{F_0}{F_2}\right)^2 + 2 \cdot \sqrt{\zeta'} \cdot \left(1 - \frac{F_0}{F_1}\right)^{0.375} \cdot \left(1 - \frac{F_0}{F_2}\right)\right]$$

with :

$$\zeta' = 0.13 + 0.34 \cdot 10^{-\left(3.4 \cdot \frac{1}{D_h} + 88.4 \left(\frac{1}{D_h}\right)^{2.3}\right)}$$

([1] diagram 4-13)

$$\zeta_{1quad} = \zeta_{quad} \cdot \left(\frac{F_1}{F_0}\right)^2$$

Velocity factor:

Contraction factor: $\overline{\overline{\varepsilon}_{0Re}} = f(Re_0)$ ([1] diagram 4-19)

Pressure loss coefficient (based on the major pipe velocity):

• $30 < Re_0 < 10^5$ $\frac{F_1}{F_0}$ $+\overline{\varepsilon}_{0}$ Re $\cdot\zeta_{1}$ quad $\zeta_1 = \zeta_{\varphi}$ ([1] diagram 4-19) • $10 < Re_0 \le 30$ $\zeta_1 = \frac{33}{5}$ $\frac{F_1}{F_0}$ $+\overline{\varepsilon}_{0}$ Re $\cdot\zeta_{1}$ quad Re₀ ([1] diagram 4-19) • $Re_0 \le 10$ $\zeta_1 = \frac{33}{\text{Re}_0}$ $\overline{F_0}$

([1] diagram 4-19)

Total pressure loss (Pa):

$$\Delta \boldsymbol{P} = \zeta_1 \cdot \frac{\boldsymbol{\rho} \cdot \boldsymbol{W}_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = \zeta_1 \cdot \frac{W_1^2}{2 \cdot g}$$

Hydraulic power loss (W):

 $Wh = \Delta P \cdot Q$

Symbols, Definitions, SI Units:

- D_h Hydraulic diameter (m)
- D₁ Major pipe internal diameter (m)
- D₂ Minor pipe internal diameter (m)
- D₀ Orifice diameter (m)
- F1 Major pipe cross-sectional area (m²)
- F₂ Minor pipe cross-sectional area (m²)
- F₀ Orifice cross-sectional area (m²)
- Q Volume flow rate (m³/s)
- G Mass flow rate (kg/s)
- w1 Mean velocity in major pipe (m/s)
- w₂ Mean velocity in minor pipe (m/s)
- w₀ Mean velocity in orifice (m/s)
- Re1 Reynolds number in major pipe ()
- Re2 Reynolds number in minor pipe ()
- Reo Reynolds number in orifice ()

 ζ' ζquad ζ1quad	Orifice thickness (m) Coefficient of effect of the thickness () Local resistance coefficient (based on the orifice velocity) () Quadratic local resistance coefficient (based on the orifice velocity) () Quadratic local resistance coefficient (based on the major pipe velocity) ()
$ \frac{\zeta_{\varphi}}{\epsilon_{\text{ORe}}} $ $ \zeta_{1} $ $ \Delta P $ $ \Delta H $ Wh	Velocity factor () Contraction factor () Pressure loss coefficient (based on the major pipe velocity) () Total pressure loss (Pa) Total head loss of fluid (m) Hydraulic power loss (W)
ρ ν 9	Fluid density (kg/m³) Fluid kinematic viscosity (m²/s) Gravitational acceleration (m/s²)

Validity range:

- any flow regime: laminar and turbulent
- stabilized flow upstream of the orifice
- angle at the top of the truncated cone between 40 ° and 60 °

Example of application:

References:

[1] Handbook of Hydraulic Resistance, 3rd Edition, I.E. Idelchik

[2] Идельчик.И.Е.Справочник по гидравлическим сопротивлениям.1992 (original document in Russian language)

Note: The formulation used for the calculation of the local resistance coefficients ζ and ζ_{quad} is that of the original reference document [2] which differs from that of the translated document [1]

HydrauCalc © François Corre 2020 Edition: May 2020