Sudden Expansion Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden expansion.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$
\beta=\frac{d_{1}}{d_{2}}
$$

Minor cross-sectional area $\left(m^{2}\right)$:

$$
\mathrm{A}_{1}=\pi \cdot \frac{d_{1}^{2}}{4}
$$

Major cross-sectional area $\left(m^{2}\right)$:

$$
\mathrm{A}_{2}=\pi \cdot \frac{d_{2}^{2}}{4}
$$

Mean velocity in minor diameter (m / s):

$$
V_{1}=\frac{Q}{A_{1}}
$$

Mean velocity in major diameter (m / s):

$$
V_{2}=\frac{Q}{A_{2}}
$$

Reynolds number in minor diameter:

$$
N_{\mathrm{Re}_{1}}=\frac{V_{1} \cdot d_{1}}{v}
$$

Reynolds number in major diameter:

$$
N_{\mathrm{Re}_{2}}=\frac{V_{2} \cdot d_{2}}{v}
$$

Local resistance coefficient ($\operatorname{Re}_{1} \geq 10^{4}$):

$$
K_{1}=\left(1-\beta^{2}\right)^{2} \quad \text { ([1] equation 11.6) (Borda-Carnot equation) }
$$

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$
K=K_{1}
$$

Total pressure loss (Pa):

$$
\Delta P=K \cdot \frac{\rho_{m} \cdot V_{1}^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=K \cdot \frac{V_{1}^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot Q
$$

Symbols, Definitions, SI Units:
$d_{1} \quad$ Minor diameter (m)
$\mathrm{d}_{2} \quad$ Major diameter (m)
$\beta \quad$ Ratio of small to large diameter ()
$A_{1} \quad$ Minor cross-sectional area (m^{2})
$A_{2} \quad$ Major cross-sectional area $\left(m^{2}\right)$
Q Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$G \quad$ Mass flow rate (kg / s)
$V_{1} \quad$ Mean velocity in minor diameter (m / s)
$V_{2} \quad$ Mean velocity in major diameter (m / s)
$\mathrm{NRe}_{1} \quad$ Reynolds number in minor diameter ()
NRe_{2} Reynolds number in major diameter ()
$\mathrm{K}_{1} \quad$ Local resistance coefficient ()
K Total pressure loss coefficient (based on mean velocity in minor diameter) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho_{m} \quad$ Fluid density ($\mathrm{kg} / \mathrm{m}^{3}$)
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime in minor diameter $\left(\mathrm{NRe}_{1} \geq 10^{4}\right)$

Example of application:

Fluid characteristics
Fluid: Water @ $1 \mathrm{~atm}[\mathrm{HC}]$ Ref.: IAPWS IF97
 Kinematic Viscosity : V 1.00340E-06 $\mathrm{m}^{2} / \mathrm{s}$


```
Geometrical characteristics
Help Info
```


$\Delta H \quad 0.2333 \mathrm{~m}$ of fluid
Complementary results

Designation	Symbol	Value	Unit
Diameters ratio ($\mathrm{d} 1 / \mathrm{d} 2$)	β	0.6130868	
Minor diameter cross-section area	A1	0.001458963	m^{2}
Major diameter cross-section area	A2	0.003881508	m^{2}
Cross-sections area ratio	A1/A2	0.3758754	
Minor diameter Reynolds number	NRe1	147207.5	
Major diameter Reynolds number	NRe2	90251	
Coefficient of local resistance (Equation 11.6)	K1	0.3895316	
Pressure loss coefficient (based on velocity in minor diameter)	K	0.3895316	
Hydraulic power loss	Wh	11.41705	w

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

HydrauCalc

Edition: February 2018
© François Corre 2018

