

Sudden Expansion Circular Cross-Section (Pipe Flow - Guide)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a sudden expansion.

The head loss by friction in the inlet and outlet piping is not taken into account in this component.

Model formulation:

Ratio of small to large diameter:

$$\beta = \frac{d_1}{d_2}$$

Minor cross-sectional area (m2):

$$A_1 = \pi \cdot \frac{{d_1}^2}{4}$$

Major cross-sectional area (m2):

$$A_2 = \pi \cdot \frac{{d_2}^2}{4}$$

Mean velocity in minor diameter (m/s):

$$V_1 = \frac{Q}{A_1}$$

Mean velocity in major diameter (m/s):

$$V_2 = \frac{Q}{A_2}$$

Mass flow rate (kg/s):

$$G = Q \cdot \rho$$

Reynolds number in minor diameter:

$$N_{\text{Re}_1} = \frac{V_1 \cdot d_1}{v}$$

Reynolds number in major diameter:

$$N_{\text{Re}_2} = \frac{V_2 \cdot d_2}{v}$$

Local resistance coefficient (Re₁ \geq 10⁴):

$$K_1 = \left(1 - \beta^2\right)^2$$

([1] equation 11.6) (Borda-Carnot equation)

Total pressure loss coefficient (based on mean velocity in minor diameter):

$$K = K_1$$

Total pressure loss (Pa):

$$\Delta P = K \cdot \frac{\rho_m \cdot V_1^2}{2}$$

Total head loss of fluid (m):

$$\Delta H = K \cdot \frac{V_1^2}{2 \cdot g}$$

Hydraulic power loss (W):

$$Wh = \Delta P \cdot Q$$

Symbols, Definitions, SI Units:

 d_1 Minor diameter (m) Major diameter (m) d_2 Ratio of small to large diameter () β Minor cross-sectional area (m²) A_1 Major cross-sectional area (m²) A_2 Volume flow rate (m³/s) Q G Mass flow rate (kq/s)Mean velocity in minor diameter (m/s) V_1 Mean velocity in major diameter (m/s) V_2 Reynolds number in minor diameter () NRe₁ Reynolds number in major diameter () NRe₂ K_1 Local resistance coefficient () Κ Total pressure loss coefficient (based on mean velocity in minor diameter) () Total pressure loss (Pa) ΔP Total head loss of fluid (m) ΔH Hydraulic power loss (W) Wh Fluid density (kg/m³) ρ_{m} Fluid kinematic viscosity (m²/s) ν Gravitational acceleration (m/s^2) g

Validity range:

• turbulent flow regime in minor diameter (NRe₁ \geq 10⁴)

Example of application:

References:

[1] Pipe Flow: A Practical and Comprehensive Guide. Donald C. Rennels and Hobart M. Hudson. (2012)

Edition: February 2018

HydrauCalc © François Corre 2018