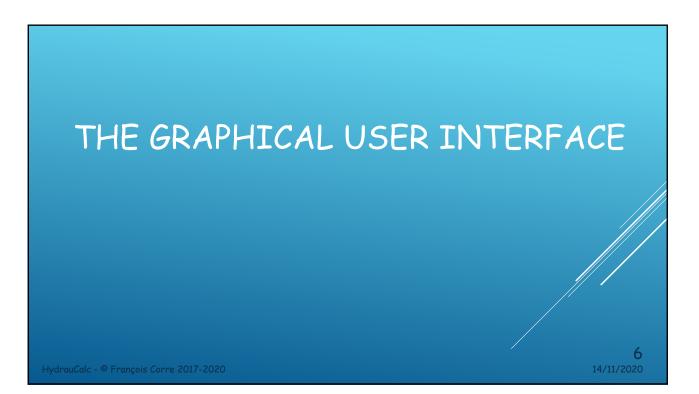


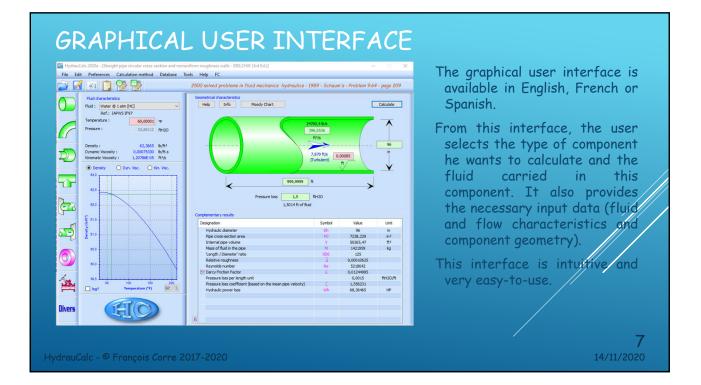
APPLICATION DESCRIPTION

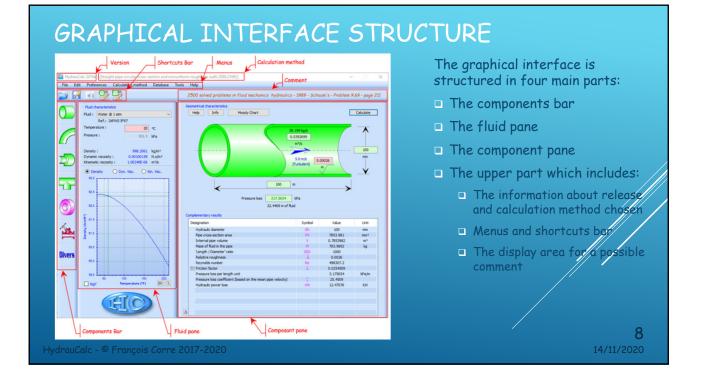
- HydrauCalc is a software application that allows accurate modeling and calculating of stabilized flows in piping elements as straight pipes, bends, changes of cross-section, tees, valves, orifices and more.
- HydrauCalc is particularly suitable for pre-projects because it allows to estimate quickly the pressure losses of the components of a hydraulic installation, and thus to specify the characteristics of the pumps.
- Friction Loss is calculated using the Darcy-Weisbach method, which provides accurate results for non-compressible fluids (liquids). This method also provides satisfactory results of reasonable accuracy for compressible fluids (gases) when the flow velocity is not very high.
- HydrauCalc is mainly based on well-known and respected references in the field of fluid flow and pressure drop calculation.

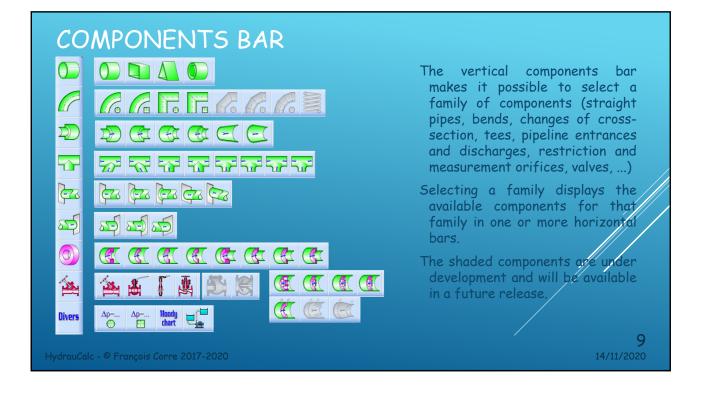
HydrauCalc - © François Corre 2017-2020

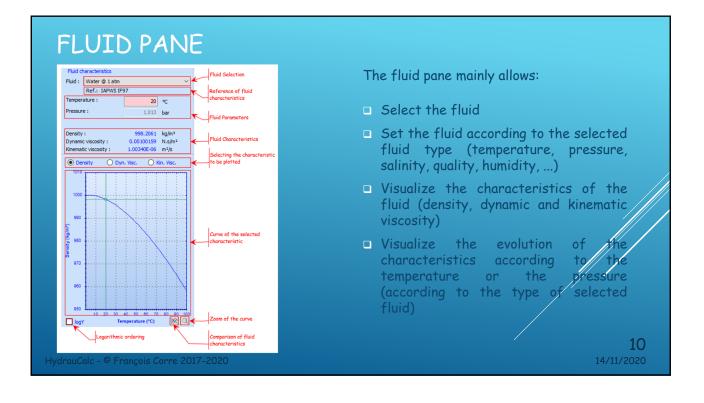
MAINLY REFERENCES

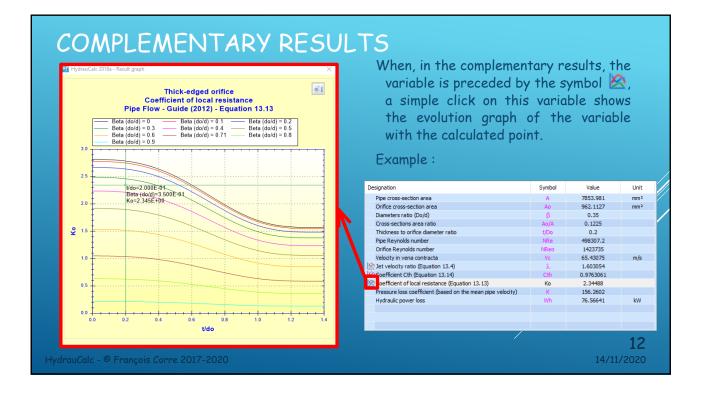

[1] Handbook of Hydraulic Resistance, I.E. Idelchik


[2] Internal Flow System, D.S. Miller

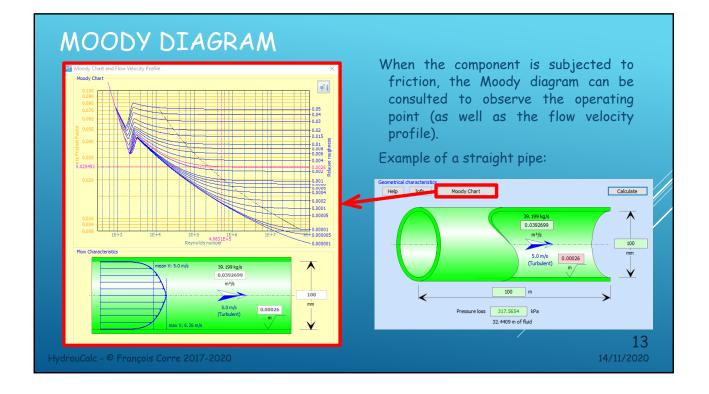

[3] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410

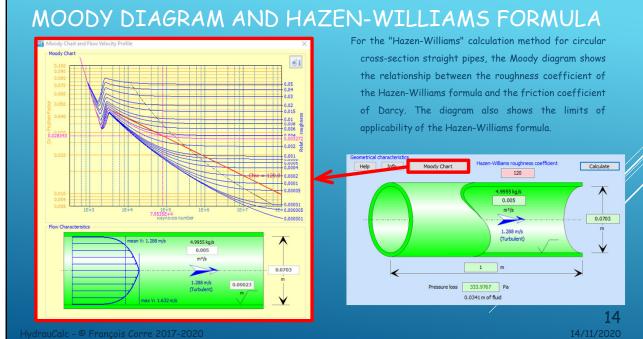

[4] Pipe Flow - A Practical and Comprehensive Guide, D. C. Rennels, H. M. Hudson

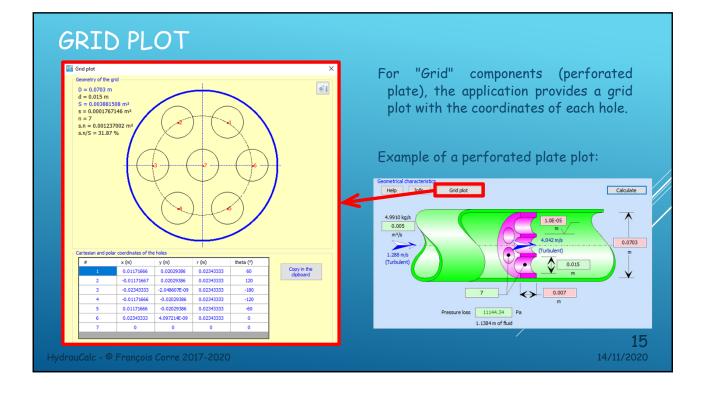

HydrauCalc - © François Corre 2017-2020

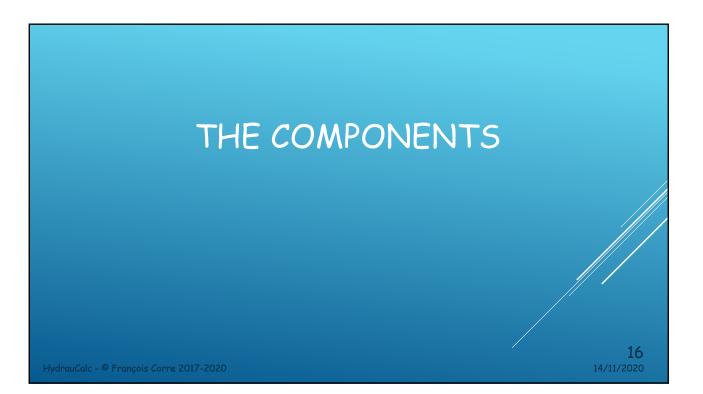


	39, 199 kg/s 0.0392699 m ⁷ /s (Turbulent) 100 m 17.5551 kPa 4409 m of fluid	.00026	Calculate		Defi acco (insi Defi Exec Visu Disp
					10
Complementary results	Currhol	Value	11-12		
Designation	Symbol	Value	Unit		poin
	Symbol Dh F0	Value 100 7853.981	Unit mm mm²		
Designation Hydraulic diameter	Dh F0 V	100	mm		
Designation Hydraulic diameter Pipe cross-section area Internal pipe volume Mess of fluid in the pipe	Dh F0 V M	100 7853.981 0.7853982 783.9892	mm mm ²		poin Acce
Designation Hydraulic diameter Pipe coss-section area Internal pipe volume Mass of fluid in the pipe Length / Diameter ratio	Dh F0 V M I/D0	100 7853.981 0.7853982 783.9892 1000	mm mm² m²		Acc
Designation Hydraulic diameter Pipe cross-section area Internal pipe volume Mess of fluid in the pipe	Dh F0 V M	100 7853.981 0.7853982 783.9892	mm mm² m²		
Designation Hydraulic diameter Pipe cross-section area Internal pipe volume Mass of fluid in the pipe Length / Diameter' ratio Relative roughness	Dh F0 V М I/D0 Д	100 7853.981 0.7853982 783.9892 1000 0.0026	mm mm² m²	-	Acc
Designation Hydraulic diameter Pipe cross-section area Internal pipe volume Mass of fuid in the pipe Length / Diameter' ratio Relative roughness Reymolds number Prission factor Pression factor	Dh F0 Μ 1/D0 3 Re λ	100 7853,981 0.7853982 783,9892 1000 0.0026 498307.2 0.0224509 3.175654	mm mm² m²		
Designation Hydraulic dameter Pipe cross-section area Internal pipe volume Mass of fluid in the pipe Length / Diameter' ratio Relative roughness Reynolds number № Friction factor Pressure loss coefficient (based on the mean pipe	Dh F0 V M I/D0 Δ Re λ velodty) ζ	100 7853.981 0.7853982 783.9892 1000 0.0026 498307.2 0.0254509 3.175654 25.4509	mm mm² m² kg kPa/m		
Designation Hydraulic diameter Pipe cross-section area Internal pipe volume Mass of fuid in the pipe Length / Diameter' ratio Relative roughness Reymolds number Presson factor Presson factor	Dh F0 Μ 1/D0 3 Re λ	100 7853,981 0.7853982 783,9892 1000 0.0026 498307.2 0.0224509 3.175654	mm mm² m² kg	•	Acc
Designation Hydraulic dameter Pipe cross-section area Internal pipe volume Mass of fluid in the pipe Length / Diameter' ratio Relative roughness Reynolds number № Friction factor Pressure loss coefficient (based on the mean pipe	Dh F0 V M I/D0 Δ Re λ velodty) ζ	100 7853.981 0.7853982 783.9892 1000 0.0026 498307.2 0.0254509 3.175654 25.4509	mm mm² m² kg kPa/m		Acc
Designation Hydraulic dameter Pipe cross-section area Internal pipe volume Mass of fluid in the pipe Length / Diameter' ratio Relative roughness Reynolds number № Friction factor Pressure loss coefficient (based on the mean pipe	Dh F0 V M I/D0 Δ Re λ velodty) ζ	100 7853.981 0.7853982 783.9892 1000 0.0026 498307.2 0.0254509 3.175654 25.4509	mm mm² m² kg kPa/m		Acc

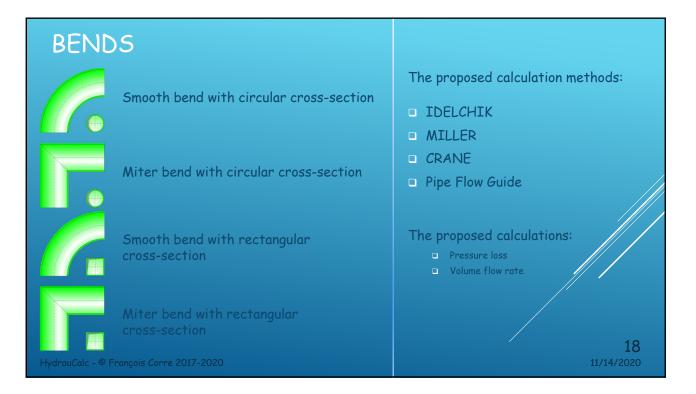

nent pane allows you to:

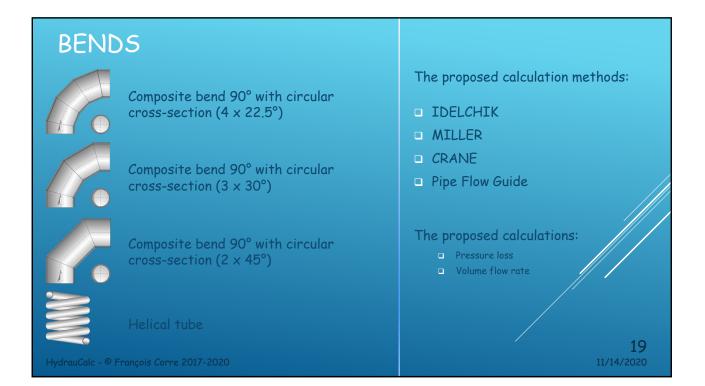

- the geometry of the component ig to the selected component type liameter, length, roughness, ...)
- low (volume flow rate)
- the calculation of the component
- the results
- he Moody diagram corresponding calculation with the calculated se of friction loss)
- nformation about the component:
- (technical documentation of the
- nformation on the use of the component)

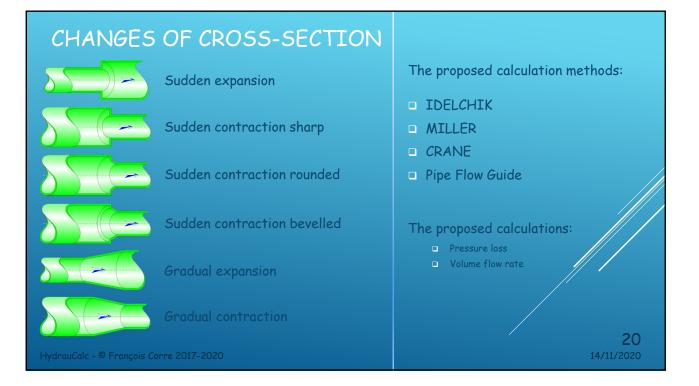

11 14/11/2020

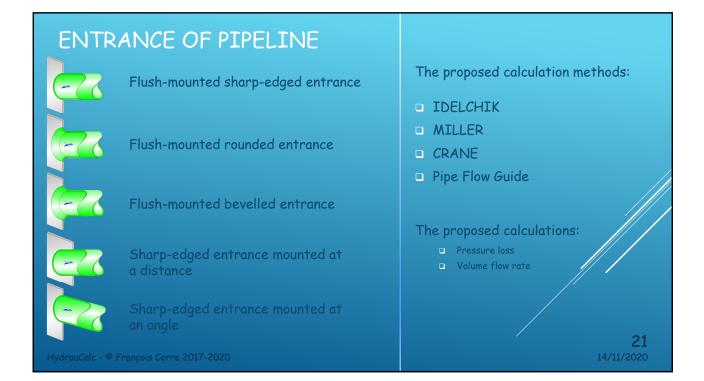


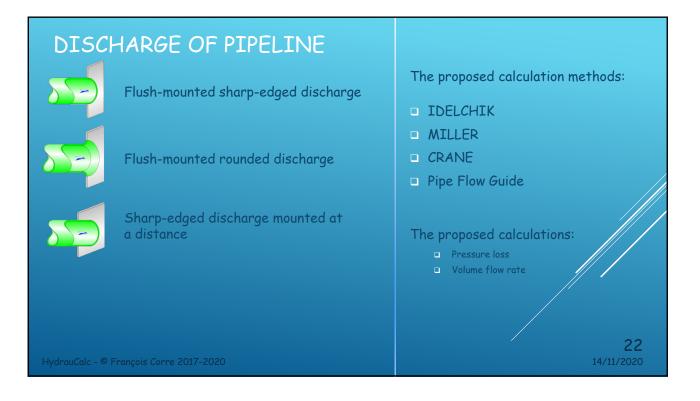
6

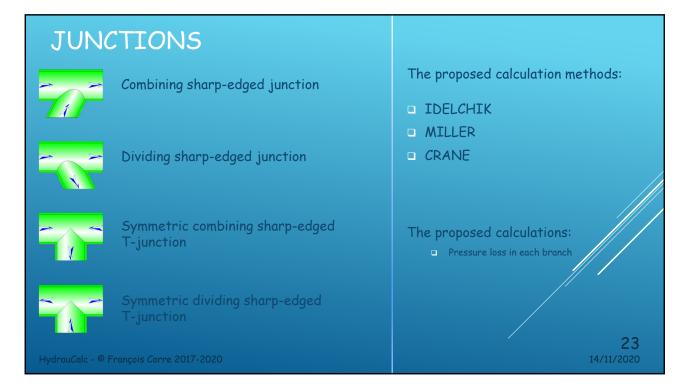


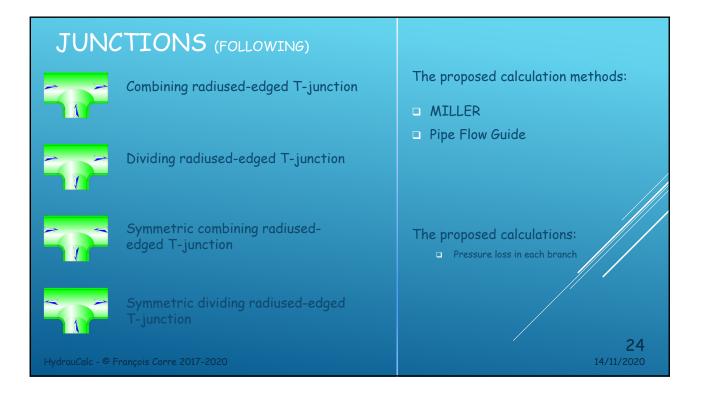


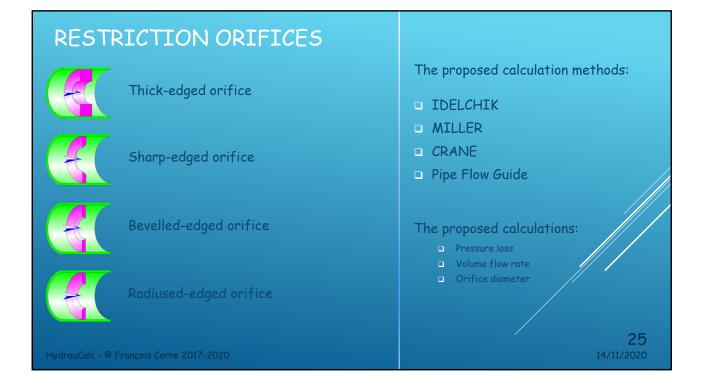


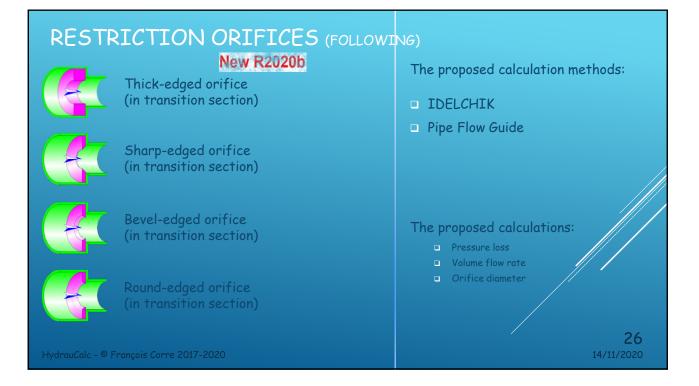

STRAIGHT PI	PES	The proposed calculation methods:
	Circular cross-section	 Uniform roughness walls (Nikuradze equation) Nonuniform roughness walls (Colebrook-White equation) Smooth roughness walls (Filonenko and Althsul equation)
	Rectangular cross-section	 Explicit Darcy friction factor MILLER Roughness walls (Swamee-Jain equation) Explicit Darcy friction factor HAZEN-WILLIAMS (only circular cross-section)
	Triangular cross-section	 Roughness walls (Hazen-Williams equation) The proposed calculations: Pressure loss Volume flow rate Learth of pipe
	Annular cross-section	 Length of pipe Inside diameter (circular cross-section) Height or width (rectangular cross-section) Height or base (triangular cross-section) 17
HydrauCalc - © François Corre 2017-20	020	14/11/2020

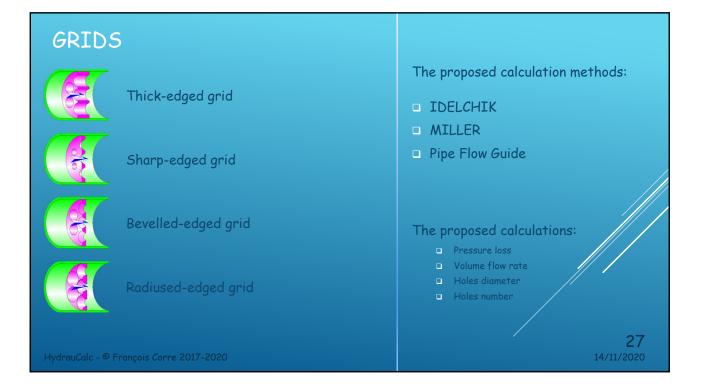


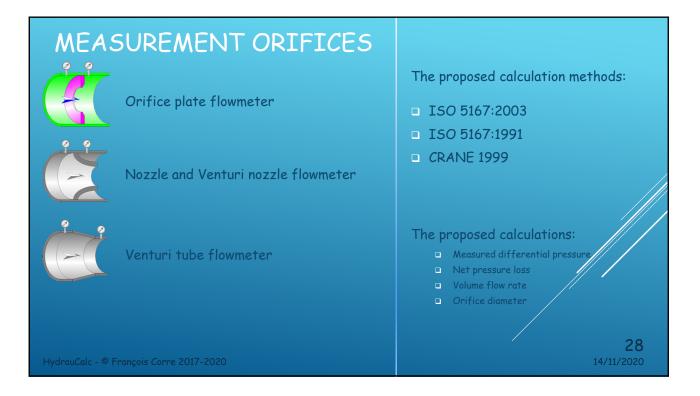


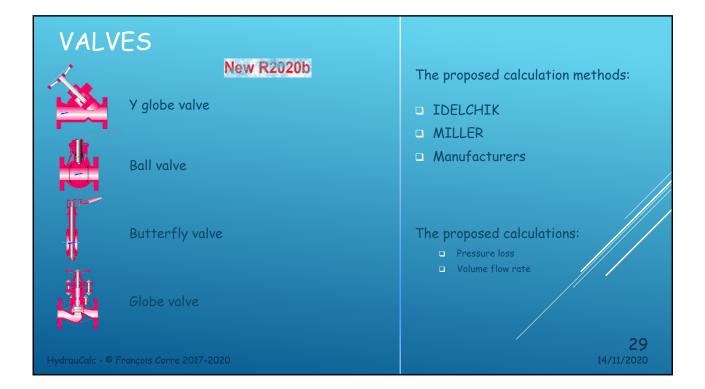


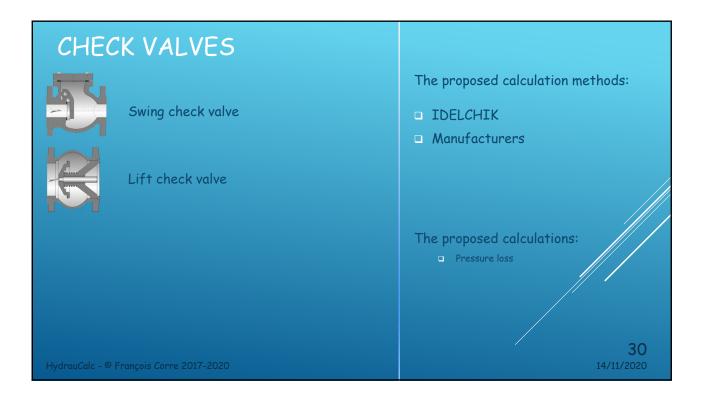


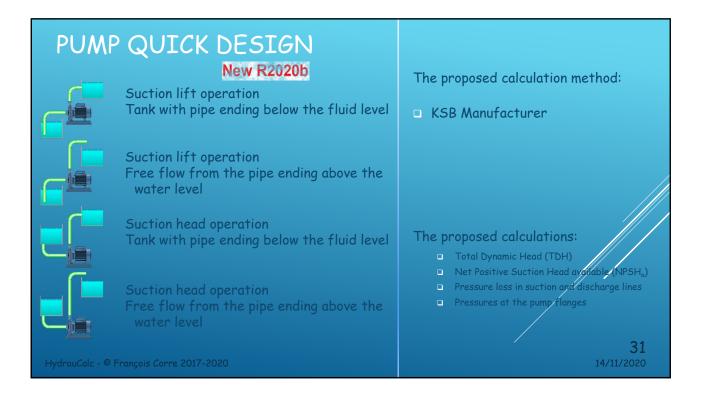


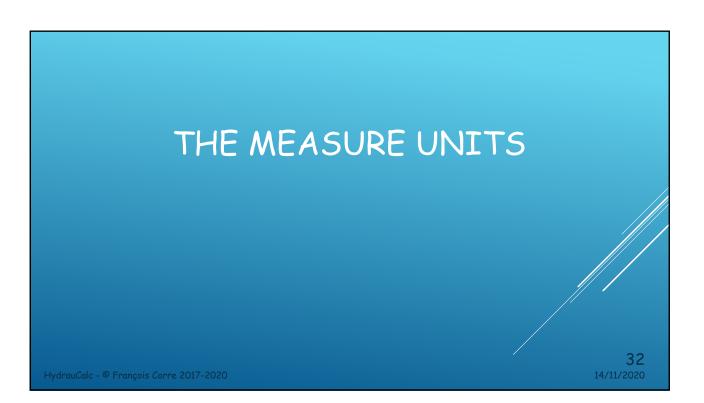








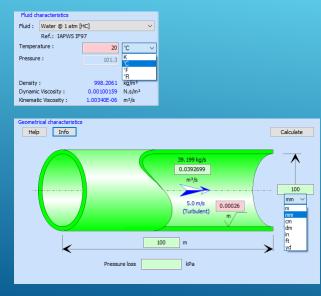




UNIT SYSTEM SELECTION

Length unit	
meter (m)	~ ок
Diameter and radius unit	
milimeter (mm)	Cancel
Thickness unit	
meter (m)	 Load unit system
Absolute roughness unit	SI unit
meter (m)	V Sl unit ('C)
Temperature unit	Si unit (C)
degree Celsius (°C)	✓ SI unit ('C, ba
Pressure unit	Imperial unit
kiloPascal (kPa)	~
Hydraulic load unit	CGS unit
meter (m)	V MKpS unit
Velocity unit	Mittipo di la
meter per second (m/s)	✓ MTS unit
Volume flow rate unit	USCS unit
cubic meter per second (m³/s)	~ OSCS UNIT
Mass flow rate unit	
kilogram per second (kg/s)	V User unit 2
Density unit	
kilogram per cubic meter (kg/m³)	✓ User unit 3
Dynamic viscosity unit	
Newton second per square meter (N.s/m ²)	~
Kinematic viscosity unit	Define unit system
square meter per second (m ² /s)	V Define as user u
Mass unit	
kilogram (kg)	✓ Define as user u
Power unit	Define as user u
kilowatt (kW)	×

Units can be selected:


individually

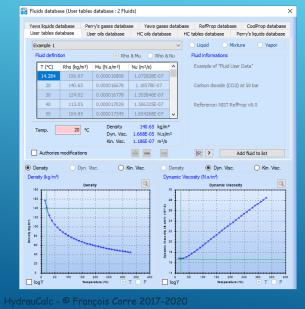
×

• by unit systems

The user can define his own systems of units (within the limit of three systems)

UNITS MODIFICATION

HydrauCalc - © François Corre 2017-2020


- The application has a dynamic unit conversion engine.
- The units displayed in the Fluid Pane and Component Data Panes can be changed by simply clicking on the unit displayed.
- After selecting a new unit, the value entered in the input box is automatically converted to the new unit.
- The results will be displayed in the current units.

34 14/11/2020

THE DATABASES

HydrauCalc - © François Corre 2017-2020

DATABASE - FLUIDS

HydrauCalc has a fluid characteristics database consisting of several hundred fluids based on recognized references:

- Perry's Handbook
- Oil products
- Yaws Handbook
- Coolprop
- Refprop (coming soon ...)

The user can also define his own fluids in the form of point tables as a function of temperature.

36 11/14/2020

35 11/14/2020

DATABASE - I	PIPINGS
--------------	---------

			k and Galvanized Steel Pipes Copper Pipes and Tubes	User databa PVC Plastic Pipe	
Steel Pipe	s - EN 10216 - Serie 1				
DN	Outside diameter (mm)	Wall Thickness (mm)	Inside diameter (mm)	Area (mm²)	
6	10.2	0.5	9.2	66,47626	
6	10.2	0.6	9	63,6174	
6	10.2	0.8	8.6	58,08818	
6	10.2	1	8.2	52,8103	
6	10.2	1.2	7.8	47.78374	
6	10.2	1.4	7.4	43.0085	
6	10.2	1.6	7	38,4846	
6	10.2	1.8	6.6	34.21202	
6	10.2	2	6.2	30.19078	
6	10.2	2.3	5.6	24.63014	
6	10.2	2.6	5	19.635	
8	13.5	0.5	12.5	122.7188	
8	13.5	0.6	12.3	118.8232	
8	13.5	0.8	11.9	111.2205	
8	13.5	1	11.5	103.8691	
8	13.5	1.2	11.1	96.76913	
8	13.5	1.4	10.7	89.92045	
8	13.5	1.6	10.3	83.32309	
8	13.5	1.8	9.9	76.97705	
8	13.5	2	9.5	70.88235	
8	13.5	2.3	8.9	62.21153	
8	13.5	2.6	8.3	54.1062	
8	13.5	2.9	7.7	46.56636	
8	13.5	3.2	7.1	39.59201	
8	13.5	3.6	6.3	31.17253	
10	17.2	0.5	16.2	206.1204	
10	17.2	0.6	16	201.0624	
	17.2	0.8	15.6	191.1349	

HydrauCalc has a database defining the diameters of the main pipe standards.

- Steel piping
- Stainless steel piping
- Copper piping
- PVC piping
- Aluminium piping
- Cast iron piping
- Black and galvanized steel piping

The user can also add his own diameter tables.

37 14/11/2020

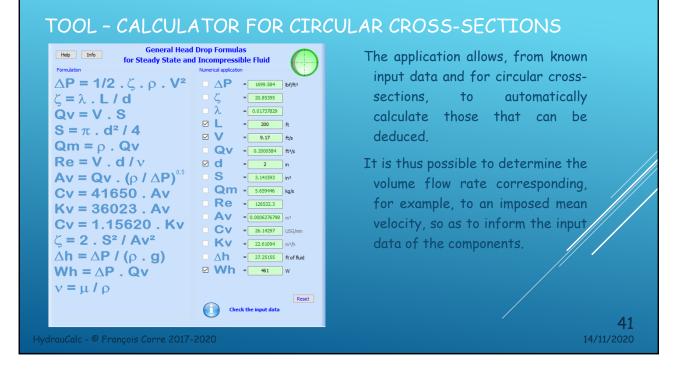
DATABASE - WALL ROUGHNESS'S

Type of tables Roughness (nm New smooth pipes 0.025 Centrifugally applied enamels 0.025 Mortar lined, ourged finish 0.05 Mortar lined, average finish 0.1 Jupit nust 0.25 Heavy routsh asphalts, enamels and tars 0.5	Type of tubes Roughness (m New smooth pipes 0.025 Centrifugally applied enamels 0.025 Notarial Inect, average finish 0.15 Mortar Inect, average finish 0.15 Upit rust 0.25 Heavy rust 0.5	Type of tubes Roughness (m New smooth pipes 0.025 Centrifugally applied enamels 0.025 Mortar lined, good finish 0.035 Mortar lined, average finish 0.1 Upth rust 0.25 Heavy rust 0.25 Heavy rust 0.5	Miller (2nd Ed)	ISO 5167-1 2003	Fluid Mechanics (7th Ed)	Idelchik (3th Ed)	Pipe Flow - Guide (2012
New smooth pipes 0.025 Centrifugally applied enamels 0.025 Centrifugally applied enamels 0.025 Moratar Inned, our apple 0.05 Moratar Inned, average finish 0.15 Jupit nust 0.25 Heavy trust 0.5 Heavy rust 1	New smooth pipes 0.025 Centrifugially applied enamels 0.025 Mortar lined, good finish 0.05 Mortar lined, average finish 0.1 Light rust 0.25 Heavy rust 0.5 Heavy rust 1	New ansoch pipes 0.025 Centrifugiky applied enamels 0.025 Notrat lined, good finish 0.05 Mortar lined, average finish 0.1 Upth rust 0.25 Heavy rust 0.25 Heavy rust 0.5	Steel pipes				
Centrifugally appled enamels 0.025 Mortar lined, good finish 0.05 Uptit task 0.1 Light task 0.25 Heavy brush asphalts, enamels and tars 0.5 Heavy task 1	Centrifugally applied enamels 0.025 Motral Ined, agood finish 0.05 Motral Ined, agoog finish 0.1 Light rust 0.25 Heavy brush asphelts, enamels and tars 0.5 Heavy brush 1	Centrifugally applied enamels 0.025 Mortar lined, good finish 0.05 Uptortar lined, average finish 0.1 Ught rust 0.25 Heavy brush asphelts, enamels and tars 0.5 Heavy brush asphelts, enamels and tars 1	Type of tubes				Roughness (mr
Motza lined, good finish 0.05 Motza lined, average finish 0.1 Upit nut: 0.25 Heavy functional spatials, enamels and tars 0.5 Heavy runt: 1	Mortar lined, average finish 0.05 Mortar lined, average finish 0.1 Light rust 0.25 Heavy Inval+ asphelts, enamels and tars 0.5 Heavy Inval+ asphelts, enamels and tars 1	Mortar lined, average finish 0.05 Mortar lined, average finish 0.1 Light rust 0.25 Heavy foush asphelts, enamels and tars 0.5 Heavy rust 1	New smooth pip	bes			0.025
Mortar lined, average finish 0.1 Light nust 0.25 Heavy brush asphalts, enamels and tars 0.5 1	Mortar lined, average finish 0.1 Light rust 0.25 Heavy brush asphalts, enamels and tars 0.5 Heavy touch 1	Mortar lined, average finish 0.1 Upht rust 0.25 Heavy brush asphalts, enamels and tars 0.5 Heavy brush asphalts, enamels and tars 1	Centrifugally ap	oplied enamels			0.025
Ught rust 0.25 Heavy brust 0.5 Heavy nust 1	Ught rust 0.25 Heavy hours apphalts, enamels and tars 0.5 Heavy nust 1	Ught rust 0.25 Heavy rust 0.5 Heavy rust 1	Mortar lined, go	ood finish			0.05
Heavy brush asphalts, enamels and tars 0.5 Heavy rust 1	Heavy brush asphalts, enamels and tars 0.5 Heavy rust 1	Heavy brush asphalts, enamels and tars 0.5 Heavy rust 1	Mortar lined, av	verage finish			0.1
Heavy rust 1	Heavy rust 1	Heavy rust 1	Light rust				0.25
			Heavy brush as	sphalts, enamels and ta	rs		0.5
Water mains with general tuberculations 1.2	Water mains with general tuberculations 1.2	Water mains with general tuberculations 1.2					1

HydrauCalc has a database of values of absolute roughness of pipe wall from recognized references:

- MILLER
- ISO 5167-1 2003
- Fluid Mechanics F. White
- IDELCHIK
- Pipe Flow Guide

DATABASE - ROUGHNESS COEFFICIENT


Cast-Iron pipes	
Type of tubes	Coefficien
cast, plain	100
cast iron, old, unlined	40-120
cast iron (10 years old)	107-113
cast iron (20 years old)	89-100
cast iron (30 years old)	75-90
cast iron (40 years old)	64-83
cast iron, tar (asphalt) coated	100
cast iron, cement lined	140
cast iron, bituminous lined	140
cast iron, mitumastic	140-150
cast iron, sea-coated	100
Ductile Iron Pipe (DIP)	140
Ductile Iron, cement lined	120
galvanized, plain	120
wrought, plain	100

HydrauCalc has a database of values of Hazen-Williams roughness coefficient from:

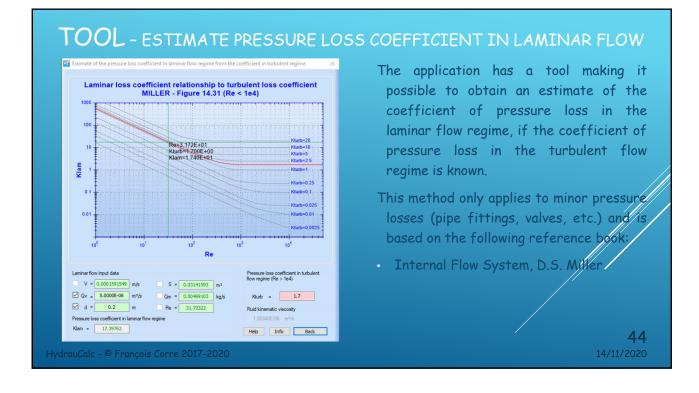
Hydraulic Tables by GARDNER S. WILLIAMS and ALLEN HAZEN - 2nd Ed. (1914)

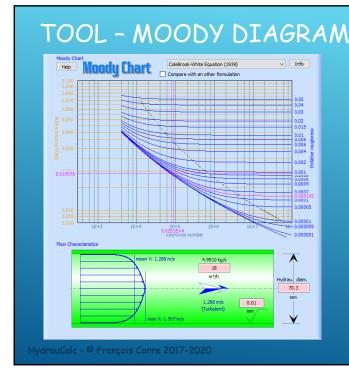
> **39** 14/11/2020

THE TOOLS

TOOL - CALCULATOR FOR RECTANGULAR CROSS-SECTIONS

Hep Info General Head Drop Formulas for Steady State and Incompressible Fluid									
Formulation	Numerical application								
$\Delta P = 1/2 . \zeta . \rho . V^2$	△ P = 23.38326 Pa								
$\zeta = \lambda$. L / dh	_ ζ = 0.8365216								
$Qv = V \cdot S$	λ = 0.02048625								
S = a . b	✓ L = 7 m								
P = 2 . (a + b)	Comparison of the second seco								
	QV = 0.2095516 m ³ /s								
dh = 4 . S / P	🗹 a = 15 cm								
$Qm = \rho \cdot Qv$	🗹 þ = 🔽 cm								
$Re = V \cdot dh / v$	P = <u>69.99998</u> cm								
$Av = Qv \cdot (\rho / \Delta P)$	S = <u>300</u> cm ²								
Cv = 41650 Av	dh = <u>17.14286</u> cm								
	Qm = 0.2401094 kg/s								
Kv = 36023 . Av	✓ Re = 72490								
Cv = 1.15620 . Kv	• Av = 0.04638713 m ²								
ζ = 2 . S ² / Av ²	CV = 1932.032 USG/min								
$\Delta h = \Delta P / (\rho \cdot g)$	□ KV = 1671.006 m³/h								
	△h = 2.080971 m of fluid								
$Wh = \Delta P \cdot Qv$	☑ Wh =w								
$v = \mu I \rho$	Reset Check the input data								

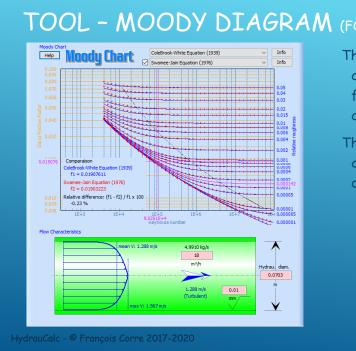

The application also makes it possible, from known input data and for rectangular crosssections, to calculate those that can be deduced from it.


It is thus possible to determine the volume flow rate corresponding, for example, to an imposed Reynolds number, so as to inform the input data of the components.

42 14/11/2020

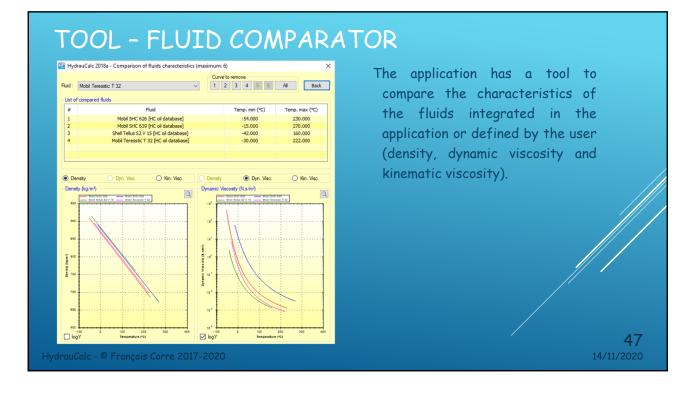
HydrauCalc - © François Corre 2017-2020

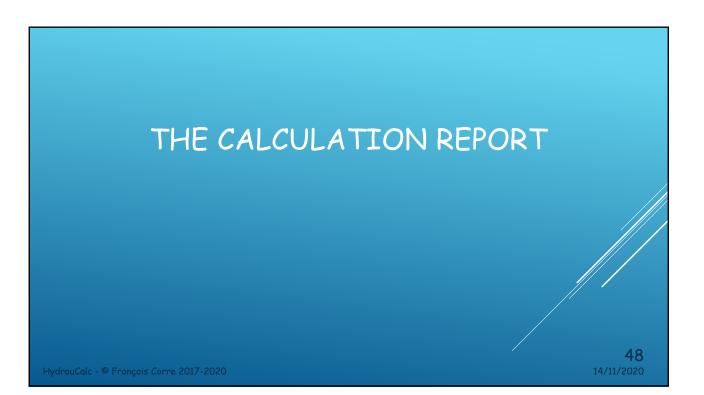
nits conversion factors Mass flow rate Force Pressure En	ergy Power Density Kin	ematic Viscosity Dynamic Viscosity	The application has a tool allowing:
Length Mass Time Tempo Unit name	erature Area Volume Symbol m/s mm/s dm/min cm/si m/si mm/si dam/si dam/si km/min hm/min hm/min hm/min form yorm in/s typin yorm in/s typin yorm in/s mph yorm in/s mph yorm in/s mph yorm in/s mph yorm in/s mph hm/min form yorm in/s mph yorm in/s mph in typin in typin in typin in typin in typin in typin in typin in typin in typin mph mph in typin in typin mph mph mph mph mph mph mph mph	Velocity Volume flow rate Value A 1 m/s 0.001 m/s 0.160 m/s 0.160 m/s 0.1 m/s 0.100 m/s 10/60 m/s 1000/3600 m/s 1000/3600 m/s 1000/3600 m/s 0.00508 m/s 0.00558 m/s 0.00558 m/s 0.00558 m/s 0.00558 m/s 0.00558 m/s 0.00554 m/s 0.0254 m/s 0.0254 m/s 0.3048 m/s 0.3048 m/s 0.3944 m/s 0.5144 m/s 0.5144 m/s 26.8224 m/s ¥	to view the conversion factors of the measurement units integrated in the application, to convert together units of measurement of the same physical size.
from 3.25 inch per second to 0.08255 meter per second		v Back	

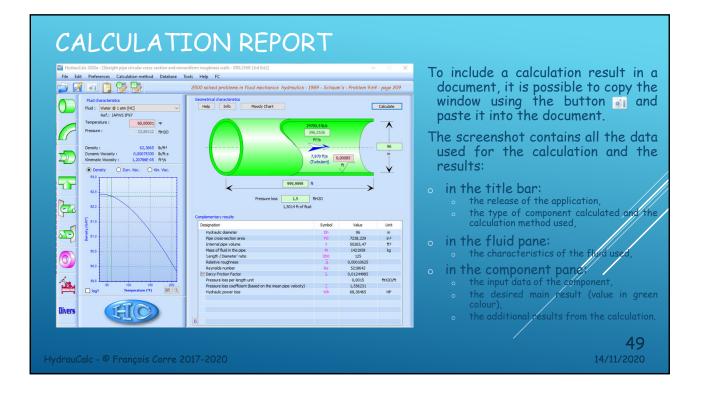


The application has a tool to calculate the coefficient of friction from more than 40 other formulations published by recognized scientists. The curves of isovalues of relative roughness are plotted in a Moody diagram and the calculated point is presented.

The velocity profile of the flow corresponding to the calculation point is also plotted in a pipe of same hydraulic diameter as that of the component.


> 45 14/11/2020




TOOL - MOODY DIAGRAM (FOLLOWING)

This tool also makes it possible to compare two different formulations for determining the Darcy friction coefficient. The relative difference found at the calculation point is calculated and displayed on the diagram.

> 46 14/11/2020

-	A B	с	D	E	F	G	^
1			0	-			_^^
2							
3							
4	Straight pipe circular cross			ghness walls -	IDELCHIK (3	d Ed.)	
5	Diameter	0,3333598					
6	Pipe cross-section area	0,08728033					
7	Length	609,6					
8	Absolute Roughness	4,60E-005					
9	Volume flow rate	25,57719					
10	Pressure loss	1,00E+009					
11	Fluid head		m of fluid				
12	Pressure loss coefficient	23,33955					
13	Darcy Friction Factor	0,01276324					_
14	Flow velocity	293,0464					_
15	Reynolds number	1,00E+008					- 1
16	Hydraulic power loss	2,56E+010					- 1
17	Density	997,9705					
18	Dynamic Viscosity	9,75E-004					
19	Kinematic Viscosity	9,77E-007	m*/s				- 1
20		-					_
21	Feuille1 / Feuille2 / Feuille3 /	<					> ×

HydrauCalc - © François Corre 2017-2020

DATA EXPORT G C D E F н O P Exporting the main data and nsive Guide (2012) - Example 7.4 - page 71 Ktotal = N1.K1 + N2.K2 + N3.K3 + N4.K4 + N5.K5 K 4,394 Pipe Flow - A Practical and Co results to a spreadsheet allows you to perform additional calculations such as: 90° LR Elb dPtotal = N1.dP1 + N2.dP2 + N3.dP3 + N4.dP4 + N5.dP5 dP 15,216 psi -Valve (2) 4" Sch 40 Pipe (35 ft) M HydrauCalc result P1 - P2 = dP + dH 17,380 psi $-Z_2$ • Calculation of the total pressure loss of the circuit by summing the pressure losses of each component. 13 14 15 16 17 18 19 Reference result: P1-P2 17,41 psi 21-45' LR Elbow Relative difference 0,174% FIGURE 7.1. Four-inch pipe section. Search for the flow circulating in the circuit from the sum of the pressure loss coefficients and using the solver integrated into the ection and no 0,3355 ft 0,0884 ft² 35 ft 1,50E-04 ft 0,05681 m³/ 6,15249 psi 14,2205 ft of 1,77655 0,3355 ft 0,0884 ft² 45 ° 0,50325 ft 0,00015 ft 0,3355 ft 0,0884 ft² 90 ° 0,50325 ft 0,00015 ft 0.05681 m⁵ 77655 01703 2,6954 ft/s 24116 2,7677 HP 2,3013 lb/ft 04E-05 lbf.s 05E-05 ft²/r 1926, 0,149 12,6954 ft/s 724116 0,27482 HP 62,3013 lb/f 2,04E-05 lbf 1,05E-05 ft² ft/s 38 39 40 41 spreadsheet Feuil1 (+) 52 14/11/2020

14/11/2020

TECHNICAL DOCUMENTATION

	-	×
Sommaire Index Bechercher Eavons	102 100 100 200 200 200 200 eec Re	 ^
Concentration and Manas Concentration Recordson Concentration Recordson Concentration Concentration	• all flow regime: Brag Profiles Rate Brag P	
Units of Heasurement Toto Units of Heasurement Toto Castly Assarance Fr.4.0-Frequently Asked Duestions Tots and trots Tes and trots Lecale Lecale Heldry Giossary		
	Pressure loss coefficient (based on the mean pipe velocity): $\boxed{ \begin{array}{c} \zeta = \lambda \cdot \frac{I}{D_n} \end{array}} ([1] \text{ equation 2-2}) \end{array}$	ł
	Total pressure loss (Pa): $\Delta P = \zeta \cdot \frac{\rho \cdot W_{0}^{-2}}{2}$ ([1] equation 2-2)	
	Total head loss of fluid (m): $\Delta H = \zeta \cdot \frac{w_{\alpha}^{-2}}{2 \cdot g}$	
<hr/>	Hydraulic power loss (W): $Mh = \Delta P \cdot Q$	~
rauCalc - © Franco	s Corre 2017-2020	>

In general, each component has several calculation methods that come from different reference works. For all components, each calculation method is detailed in a technical document including:

- A description of the method used
- The mathematical formulation of the model
- The nomenclature used for equations
- The range of the formulation
- An example of an application
- The bibliographic reference (s) used for modelling

54 14/11/2020

the

COMPONENTS MODEL VALIDATION

- HydrauCalc comes with a document that provides a comparison of software results with a series of examples published in well-known and respected references. Examples of hydraulic analysis include calculations of flow, pressure drop and pipe sizing for compressible and incompressible fluids.
- The results obtained by the HydrauCalc application are very close to the published results.
- At each new software release, a series of tests is performed to check the nonregression of the software features.

HydrauCalc - © François Corre 2017-2020

THE ROAD MAP

ROAD MAP

Next release (2021a release):

- Add new components.
- Creation of an Excel add-in for performing pressure loss calculations in an Excel spreadsheet.
- Development of a .NET class library (API) which can be used with different programming languages, including Managed C ++, C #, F #, Visual Basic ...

Following releases:

o Gradual addition of new components

HydrauCalc - © François Corre 2017-2020

Enderstanding States St