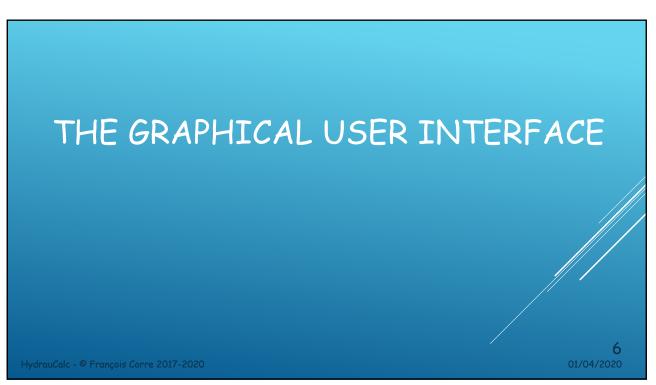
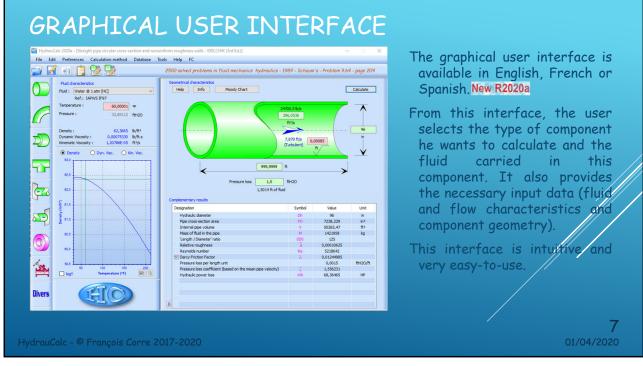
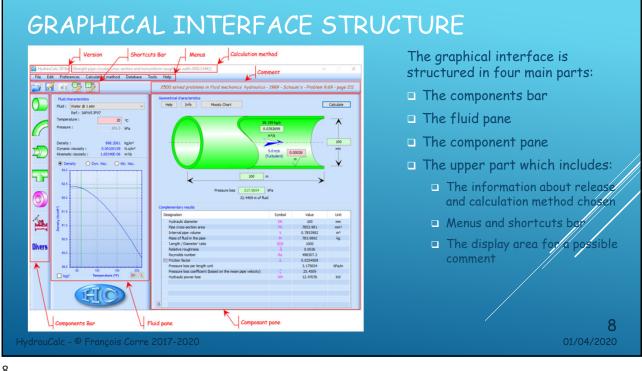
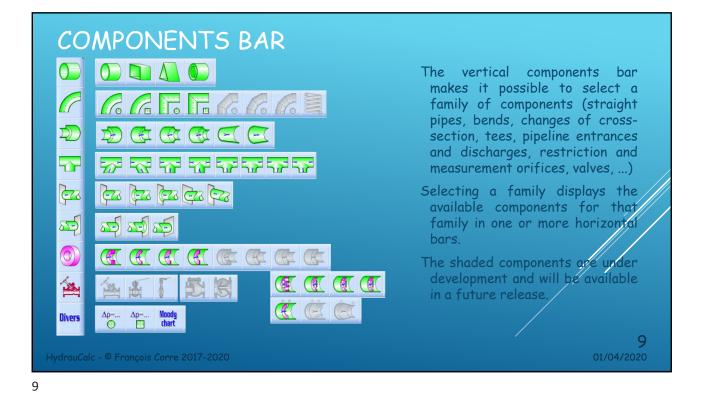
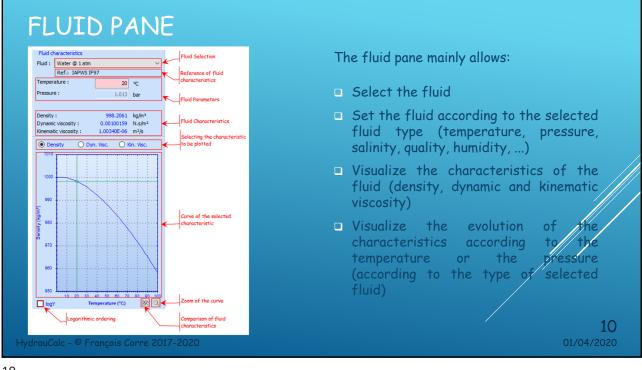

APPLICATION DESCRIPTION

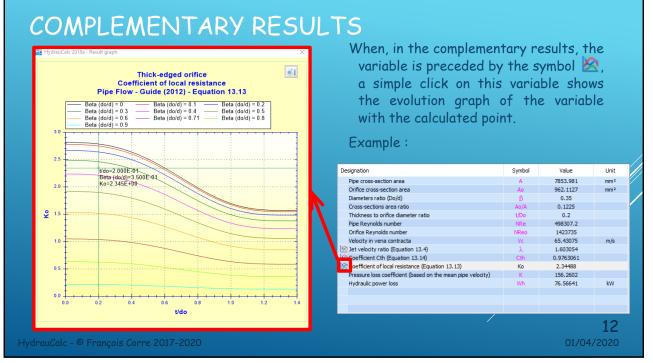

- HydrauCalc is a software application that allows accurate modeling and calculating of stabilized flows in piping elements as straight pipes, bends, changes of cross-section, tees, valves, orifices and more.
- HydrauCalc is particularly suitable for pre-projects because it allows to estimate quickly the pressure losses of the components of a hydraulic installation, and thus to specify the characteristics of the pumps.
- Friction Loss is calculated using the Darcy-Weisbach method, which provides accurate results for non-compressible fluids (liquids). This method also provides satisfactory results of reasonable accuracy for compressible fluids (gases) when the flow velocity is not very high.
- HydrauCalc is mainly based on well-known and respected references in the field of fluid flow and pressure drop calculation.

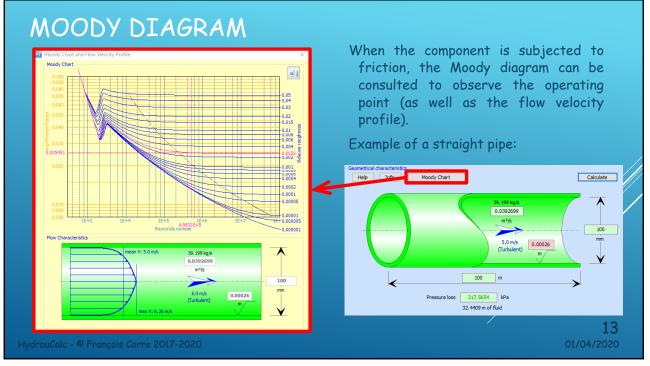

HydrauCalc - © François Corre 2017-2020

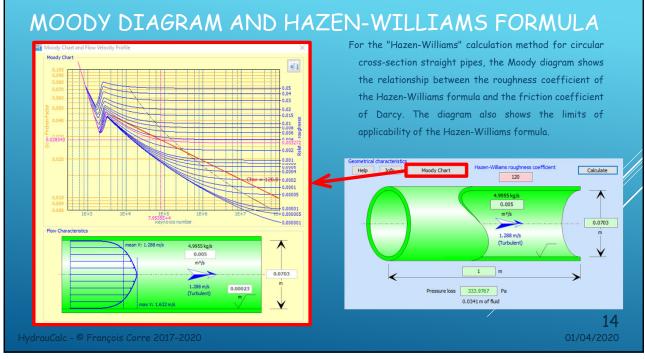


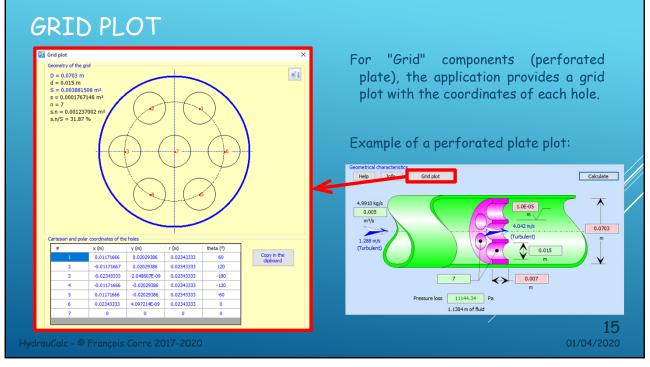




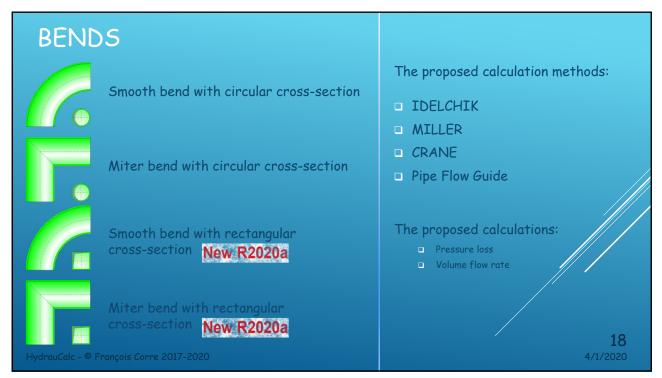


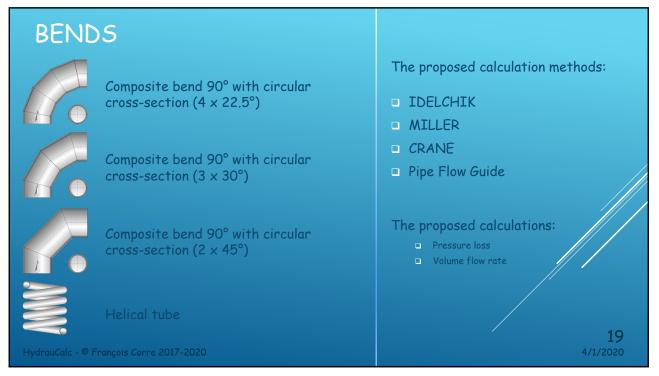


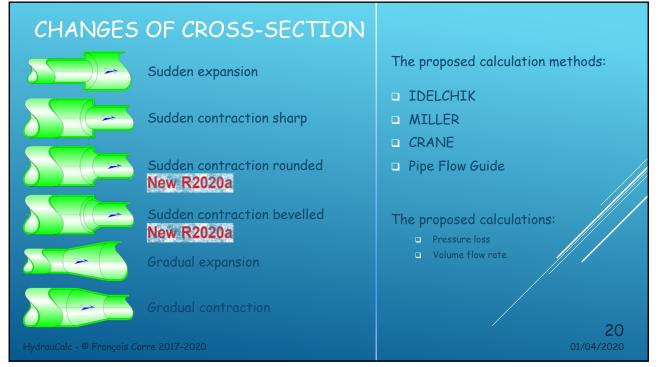

	1. 199 kg/s 0.0352699 m²/s 5.0 m/s (Turbulent) m m kPa	026	100	Define the geometry of the component according to the selected component ty (inside diameter, length, roughness,) Define flow (volume flow rate) Execute the calculation of the component Visualize the results
32.4409 m of flui	id			Display the Moody diagram correspondi to the calculation with the calculat
Complementary results Designation	Symbol	Value	Unit	to the calculation with the calculat point (case of friction loss)
Complementary results Designation Hydraulic diameter		100	mm	to the calculation with the calculat
Complementary results Designation	Symbol			to the calculation with the calculat point (case of friction loss)
Complementary results Designation Hydraulic diameter Pipe cross-section area	Symbol	100 7853.981	mm mm²	to the calculation with the calculat point (case of friction loss)
Conclementary results Designation Hydraulic diameter Pipe cross-section area Internal pipe volume Mass of fluid in the pipe Length / Dumeter / ratio	Symbol	100 7853.981 0.7853982 783.9892 1000	mm mm² m²	to the calculation with the calculat point (case of friction loss) Access information about the componen
Complementary results Designation Hydraulic diameter Pipe cross-section area Internal pipe volume Mass of fluid in the pipe Length / Diameter 'ratio Redstive roughness	Symbol Dh F0 W M I/D0 Ā	100 7853.981 0.7853982 783.9892 1000 0.0026	mm mm² m²	to the calculation with the calculation
Conclementary results Designation Hydraulic diameter Pipe cross section area Internal pipe volume Mass of fluid in the pipe Length Diameter / rabo Redelive roughness Reynolds number	Symbol Dh F0 V M	100 7853.981 0.7853982 783.9892 1000 0.0026 498307.2	mm mm² m²	to the calculation with the calculat point (case of friction loss) Access information about the componen Help (technical documentation of
Complementary results Designation Hydraulic dameter Pipe cross-section area Internal pipe volume Mass of fluid in the pipe Length / Diameter / ratio Relative roughness Reynolds number © Friction factor	Symbol Dh F0 W M I/D0 Ā	100 7853.981 0.7853982 783.9892 1000 0.0026	mm mm² m²	to the calculation with the calculat point (case of friction loss) Access information about the componen
Conclementary results Designation Hydraulic diameter Pipe cross section area Internal pipe volume Mass of fluid in the pipe Length Diameter / rabo Redelive roughness Reynolds number	Symbol Dh F0 W M I/D0 Ā	100 7853.981 0.7853982 783.9892 1000 0.0026 498307.2 0.0254509	mm² m² kg	to the calculation with the calculation point (case of friction loss) Access information about the component Help (technical documentation of component)
Conclementary results Designation Hydraulic diameter Pipe cross section area Internal pipe volume Mass of fluid in the pipe Length / Diameter' ratio Relative roughness Reymolds number Pressure loss per length unit	Symbol Dh F0 W M I/D0 Ā	100 7853.981 0.7853982 783.9892 1000 0.0026 498307.2 0.0254509 3.175654	mm² m² kg	to the calculation with the calculat point (case of friction loss) Access information about the component Help (technical documentation of

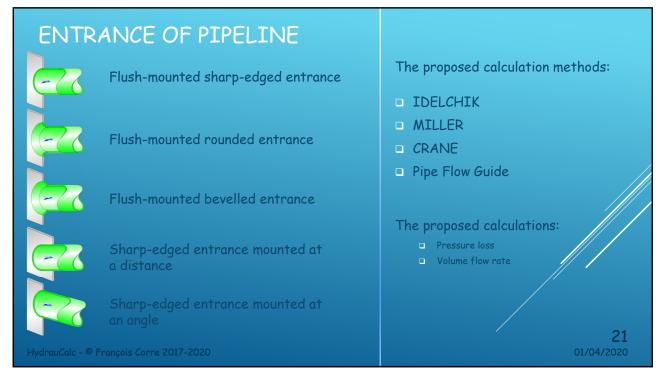


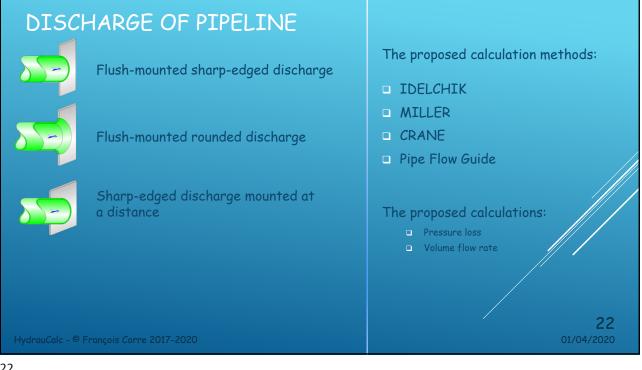


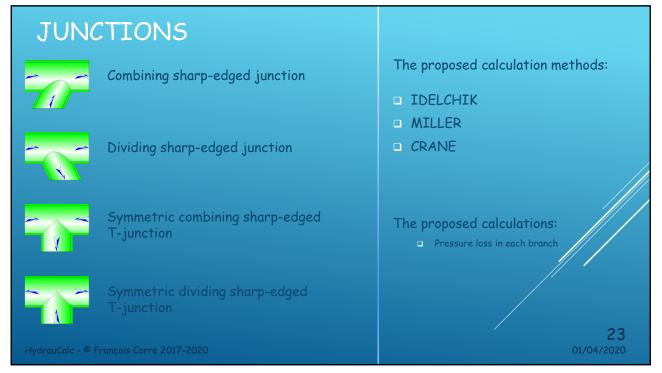


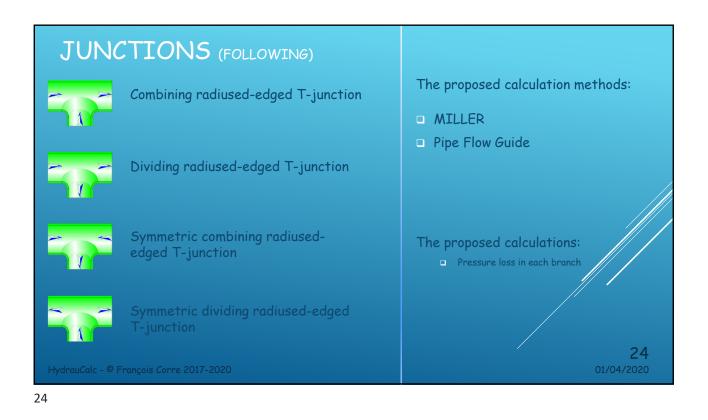


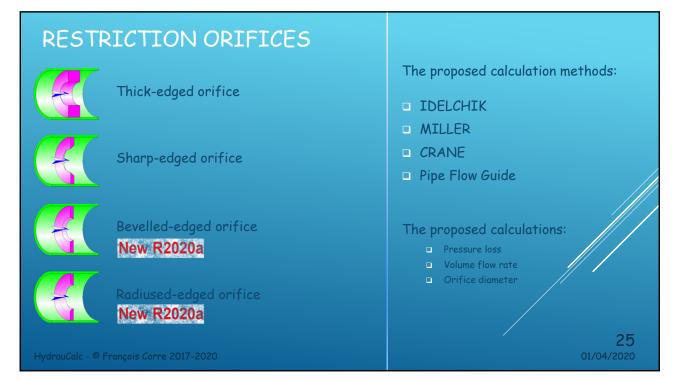


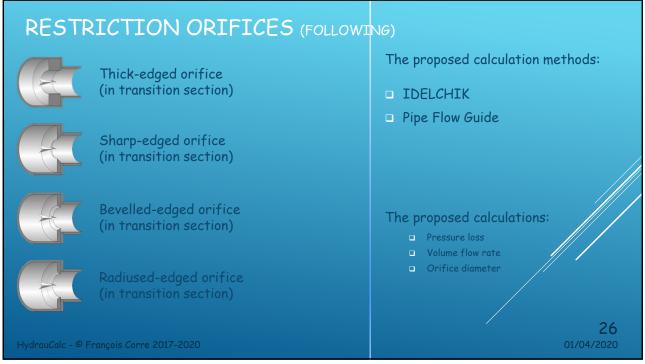

STRAIGHT PI	PES	The proposed calculation methods:
	Circular cross-section	 Uniform roughness walls (Nikuradze equation) Nonuniform roughness walls (Colebrook-White equation) Smooth roughness walls (Filonenko and Althsul equation)
	Rectangular cross-section	 Explicit Darcy friction factor MILLER Roughness walls (Swamee-Jain equation) Explicit Darcy friction factor HAZEN-WILLIAMS (only circular cross-section)
	Triangular cross-section	 Roughness walls (Hazen-Williams equation) The proposed calculations: Pressure loss Volume flow rate
	Annular cross-section	 Length of pipe Inside diameter (circular cross-section) Height or width (rectangular cross-section) Height or base (triangular cross-section) 17
HydrauCalc - © François Corre 2017-20	20	01/04/2020

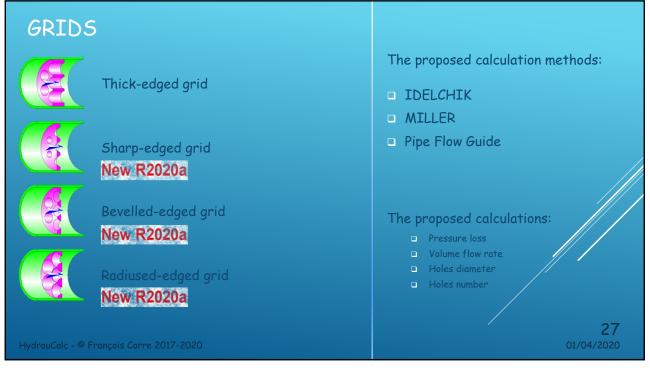


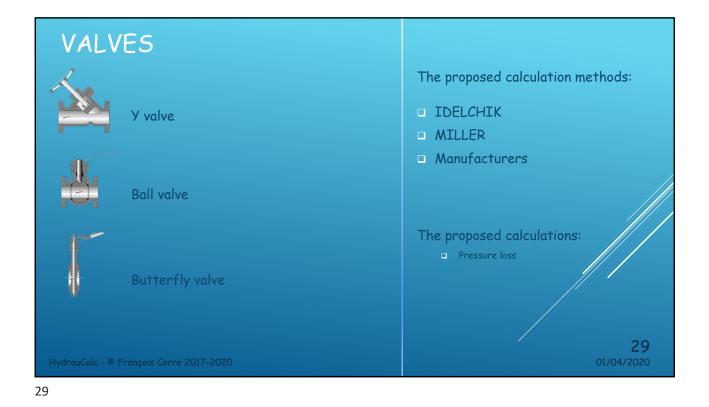


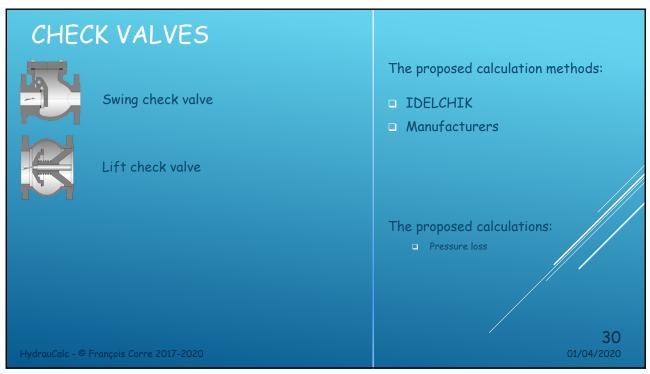




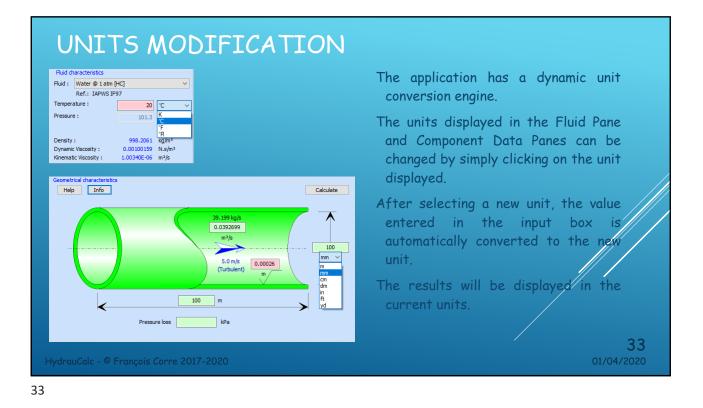




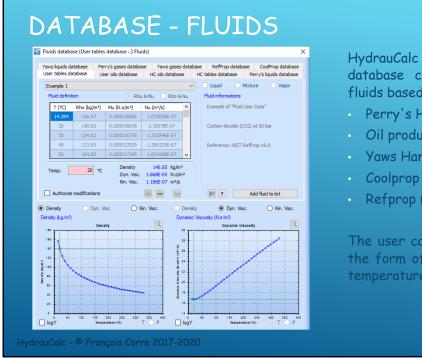




UNIT SYSTEM SELECTION


Length unit	
meter (m)	~ ОК
Diameter and radius unit	Cancel
milimeter (mm)	~ Calice
Thickness unit	Load unit system
meter (m)	
Absolute roughness unit	SI unit
meter (m)	SI unit ('C)
Temperature unit	
degree Celsius (°C)	✓ SI unit ('C, bar)
Pressure unit	Imperial unit
kiloPascal (kPa)	×
Hydraulic load unit	CGS unit
meter (m)	 MKpS unit
Velocity unit	Mitpo dilic
meter per second (m/s)	 MTS unit
Volume flow rate unit	USCS unit
cubic meter per second (m³/s)	~ Uscs unit
Mass flow rate unit	
kilogram per second (kg/s)	V User unit 2
Density unit	
kilogram per cubic meter (kg/m³)	✓ User unit 3
Dynamic viscosity unit	
Newton second per square meter (N.s/m ²)	~
Kinematic viscosity unit	Define unit system
square meter per second (m ² /s)	Define as user uni
Mass unit	Denne as user un
kilogram (kg)	 Define as user uni
Power unit	Define as user un
kilowatt (kW)	V Define as user uni

Units can be selected:


- individually
- by unit systems

The user can define his own systems of units (within the limit of three systems)

32 01/04/2020

HydrauCalc has a fluid characteristics database consisting of several hundred fluids based on recognized references:

- Perry's Handbook
- Oil products
- Yaws Handbook
- Refprop (coming soon ...)

The user can also define his own fluids in the form of point tables as a function of temperature.

> 35 4/1/2020

36 01/04/2020

35

DATABASE - PIPINGS

Charles 1 Pr	m Pipes Cast Iro		Black and Galvanized Steel Pipes	User databa	
Steel Pi	ipes Stainless S	Steel Pipes	Copper Pipes and Tubes	PVC Plastic Pip	
Steel Pipes	- EN 10216 - Serie 1				
DN	Outside diameter (mm)	Wall Thickness	(mm) Inside diameter (mm)	Area (mm²)	
6	10.2	0.5	9.2	66.47626	
6	10.2	0.6	9	63.6174	
6	10.2	0.8	8.6	58.08818	
6	10.2	1	8.2	52.8103	
6	10.2	1.2	7.8	47,78374	
6	10.2			43.0085	
6	10.2	1.6	7	38.4846	
6	10.2	1.8	6.6	34.21202	
6	10.2	2	6.2	30.19078	
6	10.2	2.3	5.6	24.63014	
6	10.2	2.6	5	19.635	
8	13.5	0.5	12.5	122.7188	
8	13.5	0.6	12.3	118.8232	
8	13.5	0.8	11.9	111.2205	
8	13.5	1	11.5	103.8691	
8	13.5	1.2	11.1	96.76913	
8	13.5	1.4	10.7	89.92045	
8	13.5	1.6	10.3	83.32309	
8	13.5	1.8	9.9	76.97705	
8	13.5	2	9.5	70.88235	
8	13.5	2.3	8.9	62.21153	
8	13.5	2.6	8.3	54.1062	
8	13.5	2.9	7.7	46.56636	
8	13.5	3.2	7.1	39.59201	
8	13.5	3.6	6.3	31.17253	
10	17.2	0.5	16.2	206.1204	
10	17.2	0.6	16	201.0624	
	17.2	0.8	15.6	191.1349	

HydrauCalc has a database defining the diameters of the main pipe standards.

- Steel piping
- Stainless steel piping
- Copper piping
- PVC piping
- Aluminium piping
- Cast iron piping
- Black and galvanized steel piping

The user can also add his own diameter tables.

DATABASE - WALL ROUGHNESSES

Miller (2nd Ed)	ISO 5167-1 2003	Fluid Mechanics (7th Ed)	Idelchik (3th Ed)	Pipe Flow - Guide (201
Steel pipes				
Type of tubes				Roughness (n
New smooth pip	es			0.025
Centrifugally ap	plied enamels			0.025
Mortar lined, go	od finish			0.05
Mortar lined, av	erage finish			0.1
Light rust				0.25
Heavy brush as	phalts, enamels and ta	rs		0.5
Heavy rust				1
Water mains wit	h general tuberculation	ns		1.2
1				
1				
-				

HydrauCalc has a database of values of absolute roughness of pipe wall from recognized references:

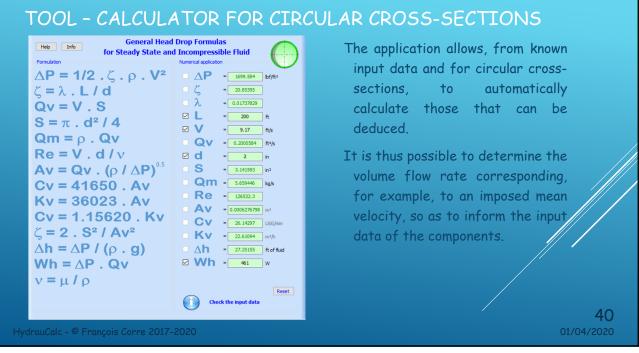
- MILLER
- ISO 5167-1 2003
- Fluid Mechanics F. White
- IDELCHIK
- Pipe Flow Guide

37

DATABASE - ROUGHNESS COEFFICIENT

Type of tubes	Coefficient
cast, plain	100
cast iron, old, unlined	40-120
cast iron (10 years old)	107-113
cast iron (20 years old)	89-100
cast iron (30 years old)	75-90
cast iron (40 years old)	64-83
cast iron, tar (asphalt) coated	100
cast iron, cement lined	140
cast iron, bituminous lined	140
cast iron, mitumastic	140-150
cast iron, sea-coated	100
Ductile Iron Pipe (DIP)	140
Ductile Iron, cement lined	120
galvanized, plain	120
wrought, plain	100

HydrauCalc has a database of values of Hazen-Williams roughness coefficient from:


Hydraulic Tables by GARDNER S. WILLIAMS and ALLEN HAZEN - 2nd Ed. (1914)

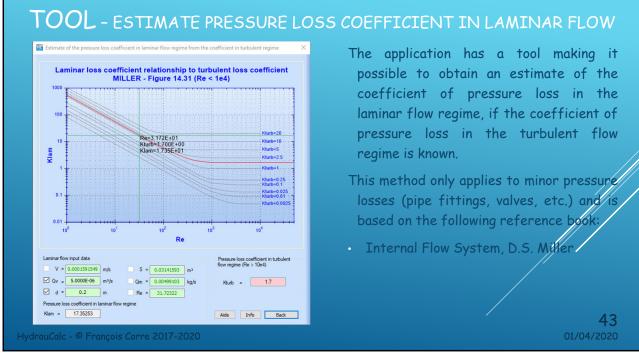
38 01/04/2020

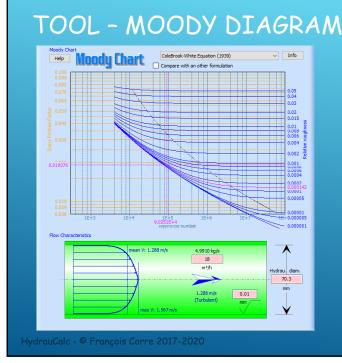
THE TOOLS

HydrauCalc - © François Corre 2017-2020

39

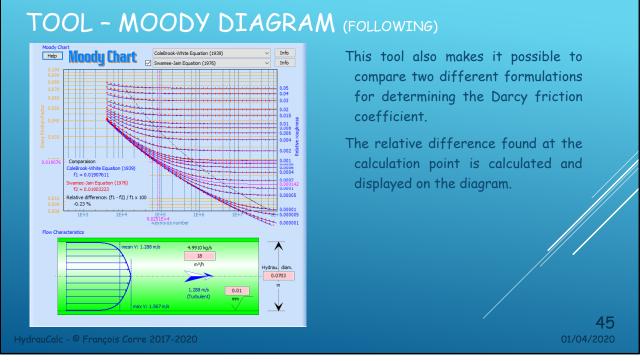
39 4/1/2020

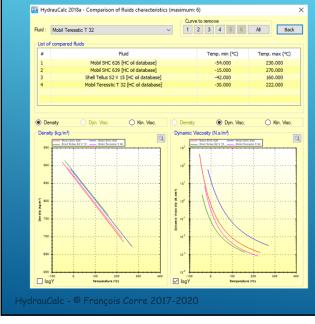




Mass flow rate Force Pressure Energy Po Length Mass Time Temperature	wer Density Kin Area Volume	ematic Viscosity Dynamic Vis Velocity Volume flow	
Unit name	Symbol	Value	^
S.I. unit : meter per second	m/s	1 m/s	
milimeter per second	mm/s	0.001 m/s	
decimeter per second	dm/min	0.1/60 m/s	
centimeter per second	cm/s	0.01 m/s	
meter per minute	m/min	1/60 m/s	
decimeter per second	dm/s	0.1 m/s	
decameter per minute	dam/min	10/60 m/s	
kilometer per hour	km/h	1000/3600 m/s	
hectometer per minute	hm/min	100/60 m/s	
decameter per second	dam/s	10 m/s	
kilometer per minute	km/min	1000/60 m/s	
foot per minute	ft/min	0.00508 m/s	
foot per minute	fpm	0.00508 m/s	
yard per minute	yd/min	0.01524 m/s	
yard per minute	ypm	0.01524 m/s	
inch per second	in/s	0.0254 m/s	
inch per second	ips	0.0254 m/s	
foot per second	ft/s	0.3048 m/s	
foot per second	fps	0.3048 m/s	
mile per hour	mile/h	0.44704 m/s	
mile per hour	mph	0.44704 m/s	
yard per second	yd/s	0.9144 m/s	
yard per second	yps	0.9144 m/s	
mile per minute mile per minute	mile/min mpm	26.8224 m/s 26.8224 m/s	- .
Conversion	mpm		
from 3.25 inch per second (in/s)		~	
		~	

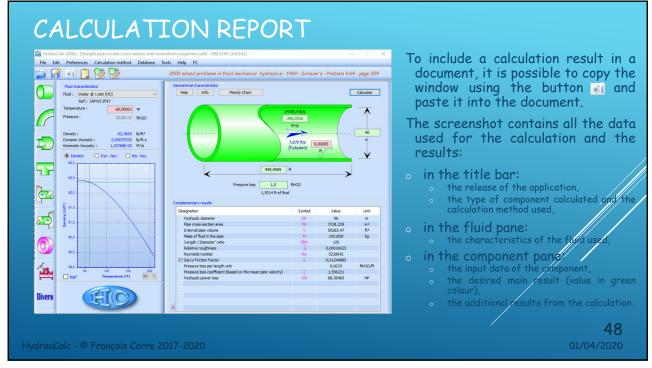
The application has a tool allowing:


- to view the conversion factors of the measurement units integrated in the application,
- to convert together units of measurement of the same physical size.



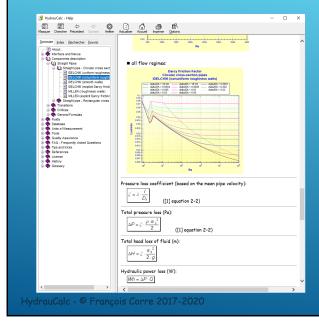
- The application has a tool to calculate the coefficient of friction from more than 40 other formulations published by recognized scientists. The curves of isovalues of relative roughness are plotted in a Moody diagram and the calculated point is presented.
 - The velocity profile of the flow corresponding to the calculation point is also plotted in a pipe of same hydraulic diameter as that of the component.

44 01/04/2020



TOOL - FLUID COMPARATOR

The application has a tool to compare the characteristics of the fluids integrated in the application or defined by the user (density, dynamic viscosity and kinematic viscosity).



	A B	С	D	E	F	G	For each component, the
2							
3							input data and the main
4	Straight pipe circular cross	s-section and no	nuniform rou	ighness walls	- IDELCHIK (3	Red Ed.)	results can be copied to
5	Diameter	0.3333598		gintees mana			
6	Pipe cross-section area	0.08728033					the clipboard, using the
7	Length	609.6	m				
8	Absolute Roughness	4,60E-005	m				button 🛃 , for reuse in
9	Volume flow rate	25,57719	m³/s				
10	Pressure loss	1,00E+009	Pa				another application, for
11	Fluid head	102191,5	m of fluid				
12	Pressure loss coefficient	23,33955					example a spreadsheet.
13	Darcy Friction Factor	0,01276324					
14	Flow velocity	293,0464	m/s				
15	Reynolds number	1,00E+008					
16	Hydraulic power loss	2,56E+010					
17	Density	997,9705					
18	Dynamic Viscosity	9,75E-004					
19 20	Kinematic Viscosity	9,77E-007	mf/s			_	
							// *
21		1.				-	× //
	Feuille1 / Feuille2 / Feuille3 /	<					→ <mark> </mark>

Image: Interest i	A B	C D E	F G	н і	J K	L	M N O	P II I
1 1 12 12 0.3786 0.3786 FIGURE 7.1. Four-inch pip section. In white 1 12 Number 4 Processeries and number negresseries of another negr	4" Sc		90° LR Elbow	(4)	K 4,39 dPtotal dP 15,21 HydrauC P1-P2 17,30 Referent P1-P2 17,4	s N1.dP1+N2.dP2+N3.dP3+ 5 psi alc result: dP+dH 2 psi kr result: 1 psi		additional calculations such as
Except pps circular consistence and nonliferin regimes with -Dimension find and and include consistence - Pipe Pipe - Outed (D11) Dimension Processes circular consistence and nonliferin regimes and the pipe consistence - Pipe consistence - Pipe Pipe - Outed (D11) Dimension Pipe Pipe - Outed (D11) Dimension Pipe consistence - Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Dimension Pipe - Outed (D11) Provide Dimension Pipe - Outed (D11) Dimension Pipe - Out					0,1749	5		losses of each component.
	A "schedule 40 Tige (New Straigte pige sicular ross Dimeter Pige coss-section area Length Absolute Roughness Volume flow rate 4 Pressore loss coefficient Straigte pige Straigte pige	s-action and nonuniferm roughtn 0,385 ft 1 35 ft 1 1,556 Cd ft 1 0,05651 m ³ /s 6,55249 psi 1,2205 dt 10 dt 1 1,77655 0,01703 1,22056 ft 10 dt 1 1,77655 0,01703 1,22056 ft 10 dt 1 2,20564 ft/s 2,2051 htpl 2,05605 ft/s		ross-section - Pipe Flo 0,3355 ft 0,03854 ft ² 0,50325 ft 0,005681 m ³ /s 0,51601 pai 1,19267 ft of fluid 0,149 0,2462 HP 62,2013 lb/h ² 62,20462 HP	w - Guide (2012) dP K	901ERBook Smooth beer with circular Diameter Passage cross-section are: Band angle Band angle Band angle Radius of curvature Absoluce Roughness Volume flow rate Pressure loss Rouid head Pressure loss coefficient Flow valocity Pressure loss coefficient Flow valocity Reynolds number Hydraulic power loss Density Dynamic Viscosity	0.3355 ft 0.0684 ft ⁴ 90 * 0.5035 ft 0.5035 ft 0.50515 ft 0.75173 pii 3.7375 ftroffluid 0.21706 2.2,6954 ft/s 7.24116 0.40036 HP 6.2,0313 lb/h ² 2.04455 lb/s/h ²	circulating in the circulating in the circulating from the sum of the pressure loss coefficient and using the solve integrated into the solve into the solve integrated into the solve into the solve into the solve integrated in

TECHNICAL DOCUMENTATION

In general, each component has several calculation methods that come from different reference works. For all components, each calculation method is detailed in a technical document including:

- A description of the method used
- The mathematical formulation of the model
- The nomenclature used for equations
- The range of the formulation,
- An example of an application
- The bibliographic reference (s) used for modelling

53 01/04/2020

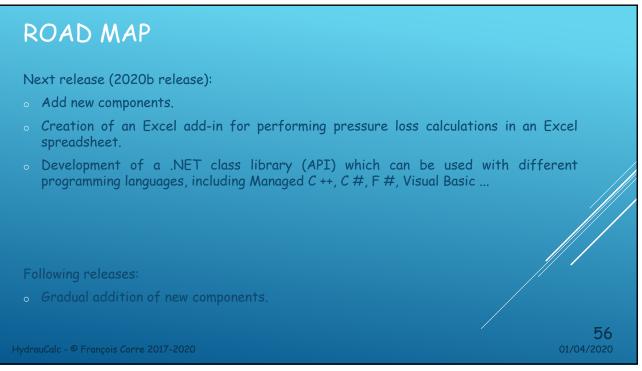
the

COMPONENTS MODEL VALIDATION

HydrauCalc comes with a document that provides a comparison of software results with a series of examples published in well-known and respected references. Examples of hydraulic analysis include calculations of flow, pressure drop and pipe sizing for compressible and incompressible fluids.

The results obtained by the HydrauCalc application are very close to the published results.

At each new software release, a series of tests is performed to check the nonregression of the software features.


HydrauCalc - © François Corre 2017-2020

54 01/04/2020

THE ROAD MAP

HydrauCalc - © François Corre 2017-2020

55

55 01/04/2020

