Flush-mounted rounded entrance Circular Cross-Section (CRANE)

Model description:

This model of component calculates the minor head loss (pressure drop) generated by the flow in a flush-mounted rounded entrance of piping.

The head loss by friction in the piping is not taken into account in this component.

Model formulation:

Hydraulic diameter (m):

$$
\mathrm{D}_{h}=\mathrm{D}
$$

Pipe cross-sectional area $\left(m^{2}\right)$:

$$
\mathrm{A}=\pi \cdot \frac{D^{2}}{4}
$$

Mean velocity in pipe (m / s):

$$
v=\frac{q}{A}
$$

Mass flow rate (kg/s):

$$
G=q \cdot \rho
$$

Reynolds number in pipe:

$$
\operatorname{Re}=\frac{v \cdot D}{v}
$$

Local resistance coefficient ($\operatorname{Re} \geq 10^{4}$):
■ $\mathrm{r} / \mathrm{D} \leq 0.15$
$\mathrm{K}_{1}=f\left(\frac{r}{D}\right)$
([1] Appendix A-29)

■ $\mathrm{r} / \mathrm{D}>0.15$
$\mathrm{K}_{1}=0.04$ ([1] Appendix A-29)

Total pressure loss coefficient (based on mean velocity in pipe):
$K=K_{1}$

Total pressure loss (Pa):

$$
\Delta P=K \cdot \frac{\rho \cdot v^{2}}{2}
$$

Total head loss of fluid (m):

$$
\Delta H=K \cdot \frac{v^{2}}{2 \cdot g}
$$

Hydraulic power loss (W):

$$
W h=\Delta P \cdot q
$$

Symbols, Definitions, SI Units:

Dh Hydraulic diameter (m)
D Pipe diameter (m)
A Pipe cross-sectional area (m^{2})
$q \quad$ Volume flow rate ($\mathrm{m}^{3} / \mathrm{s}$)
$v \quad$ Mean velocity in pipe $(\mathrm{m} / \mathrm{s})$
$G \quad$ Mass flow rate (kg / s)

Re Reynolds number in pipe ()
$r \quad$ Radius of the round (m)
$\mathrm{K}_{1} \quad$ Local resistance coefficient ()
$K \quad$ Total pressure loss coefficient (based on mean velocity in pipe) ()
$\Delta \mathrm{P} \quad$ Total pressure loss (Pa)
$\Delta H \quad$ Total head loss of fluid (m)
Wh Hydraulic power loss (W)
$\rho \quad$ Fluid density ($\mathrm{kg} / \mathrm{m}^{3}$)
$v \quad$ Fluid kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$)
$9 \quad$ Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Validity range:

- turbulent flow regime in pipe ($\operatorname{Re} \geq 10^{4}$)

Example of application:

References:

[1] CRANE - Flow of Fluids Through Valves, Fitting and Pipe - Technical Paper No. 410 Edition 1999

